
Study of Double Beta Decays of 150Nd

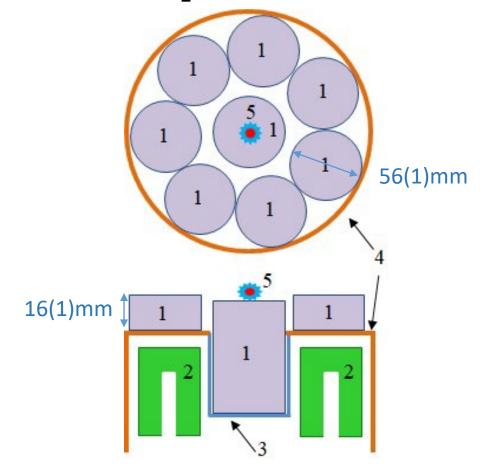
A.S. Barabash, P. Belli, R. Bernabei, R.S. Boiko, F. Cappella, V. Caracciolo, R. Cerulli, F.A. Danevich, D.L. Fang, F. Ferella, A. Incicchitti, D.V. Kasperovych, V.V. Kobychev, S.I. Konovalov, M. Laubenstein, A. Leoncini, V. Merlo, S. Nisi, D.V. Poda, O.G. Polischuk, I.B.-K. Shcherbakov, F. Simkovic, A. Timonina, V.S. Tinkova, V.I. Tretyak, V.I. Umatov

Introduction

Experimental results for $^{150}Nd \rightarrow ^{150}Sm (0^{+}_{1}, 740.46 \text{ keV})$

Short description	T _{1/2} , 10 ²⁰ y	Year [Ref.]
Modane underground laboratory (4800 m w.e.), HP Ge 400 cm3, 3046 g of Nd_2O_3 (δ = 5.638%), 1,29 y, 1-d spectrum	1.4 ^{+0.5} _{-0.4}	2004 [1]
Re-estimation of the measurement in [1]	1.33+0.45	2009 [2]
Kimballton Underground Research Facility, USA (1450 m w.e.), 2 HP Ge (~304 cm 3 each one), 50 g 150 Nd $_2$ O $_3$ (δ = 93.6%), 15427 h, coincidence spectrum	1.07 ^{+0.46} -0.26	2014 [3]
Modane underground laboratory (4800 m w.e.), NEMO-3 detector, foil of 150 Nd ₂ O ₃ (δ = 91.0 %).	1.11+0.260.21	2021 [3]

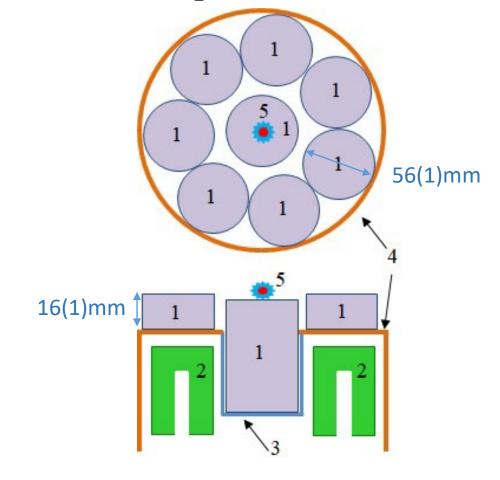
^[1] A.S. Barabash et al., Phys. Atom. Nucl. 67 (2004) 1216.


^[2] A.S. Barabash et al., Phys. Rev. C 79 (2009) 045501.

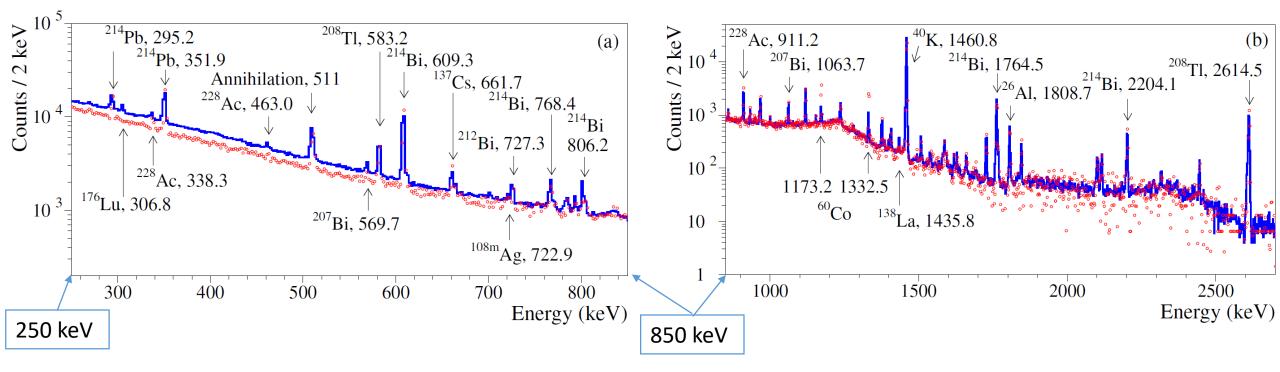
^[3] M.F. Kidd et al., Phys. Rev. C 90 (2014) 055501.

^[4] V. Tretyak (on behalf of NEMO-3 collaboration), abstract of LXXI International conference "NUCLEUS-2021.

Experimental Setup

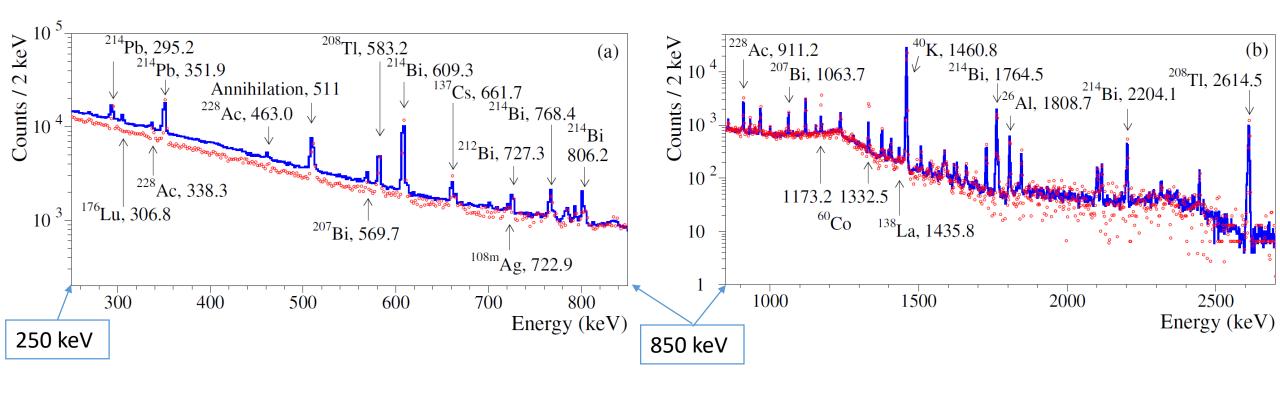


Schematic view of the set-up with Nd-containing source samples (1) installed in the HPGe detector system: (2) coaxial HPGe detectors, (3) aluminium cup of the detector system endcap, (4) copper part of the endcap, (5) position of radioactive γ sources during the calibration campaign.


Experimental Setup

- 2381 g Nd₂O₃ sample (average density ~2.84 g/cm³), used in previous experiment [1], additionally purified before the present measurements [2].
- 4 HPGe detectors (≃225 cm³ each) in a cryostat with cylindrical well in the center; Gran Sasso National Laboratory (LNGS)
- Shield: copper (10 cm), lead (20 cm)
- Plexiglas container flushed with high-purity nitrogen gas (to remove the radon)

Schematic view of the set-up with Nd-containing source samples (1) installed in the HPGe detector system: (2) coaxial HPGe detectors, (3) aluminium cup of the detector system endcap, (4) copper part of the endcap, (5) position of radioactive γ sources during the calibration campaign.


Energy Spectra

Energy spectra measured with the Nd_2O_3 sample over 5.845 y (blue) and without sample for 0.8969 y (normalized to 5.845 y, red) by the low-background HPGe-detector system. The energy of the γ peaks is in keV.

LIDCo dotactor	Energy resolution for γ peaks, FWHM (keV)			
HPGe detector	295.2 keV (²¹⁴ Pb)	351.9 keV (²¹⁴ Pb)	609.3 keV (²¹⁴ Bi)	1460.8 keV (⁴⁰ K)
1	1.83(8)	1.81(5)	2.03(4)	2.375(8)
2	1.56(8)	1.54(5)	1.80(4)	2.18(4)
3	3.11(9)	3.06(10)	2.42(13)	2.64(3)
4	3.49(18)	3.39(20)	2.80(5)	3.84(2)

Radioactive Contamination of the Nd₂O₃ Sample

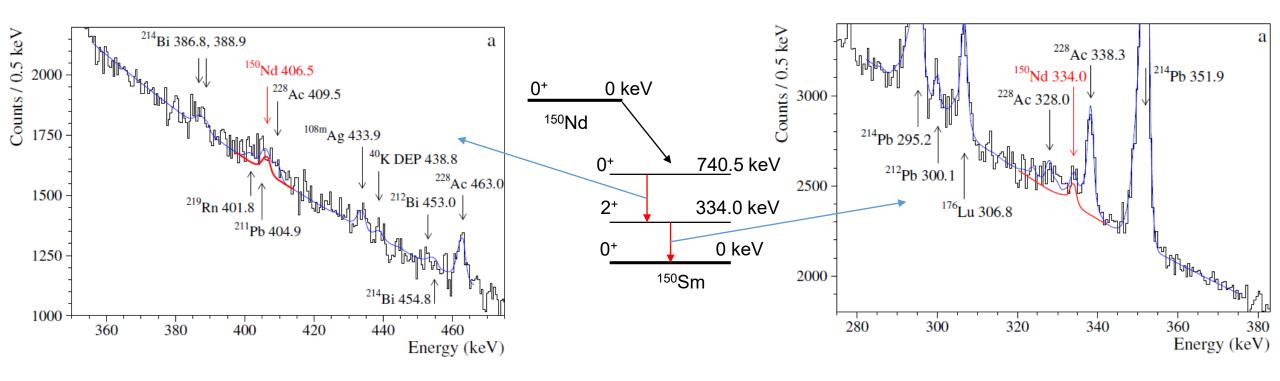
The peaks in the spectra presented in Figs. can be assigned to γ quanta of 40 K and nuclides of the 232 Th and 238 U chains. In addition, 26 Al, 60 Co, 108m Ag, 137 Cs, 207 Bi γ peaks are observed in the both spectra.

$$A = (S_{sample}/t_{sample} - S_{bg}/t_{bg})/(\eta \varepsilon m)$$

 S_{sample} (S_{bg}) = area of a peak; t_{sample} (t_{bg}) = time of measurement; $\eta = \gamma$ -ray emission absolute intensity in the transition; $\epsilon = full$ energy peak detection efficiency; m = sample mass.

Radioactive Contamination of the Nd₂O₃ Sample

In addition to usual background contaminations (40 K, U/Th), γ peaks of lanthanides 176 Lu (306.8 keV) and 138 La (1435.8 keV) were observed in the spectrum with Nd₂O₃ sample.


The radioactive contamination of the sample by the lanthanides have been estimated as:

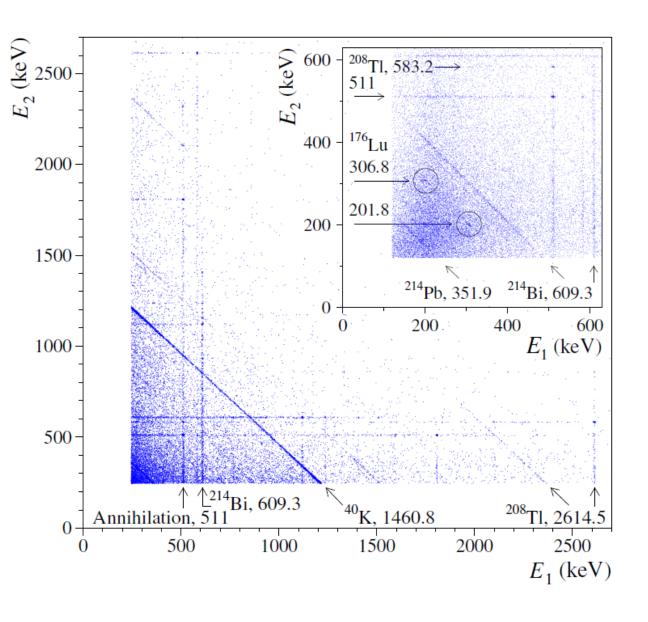
¹³⁸La: 0.085(7) mBq/kg ¹⁷⁶Lu: 0.32(2) mBq/kg

Other estimated contaminants: ²²⁸Ra, ²²⁸Th, ²³⁵U, ²²⁷Ac, ⁴⁰K.

Chain	Nuclide	Activity (mBq/kg)	
	rvachae	Before purification [29]	Purified material
	⁴⁰ K	16 ± 8	3.1 ± 0.7
	$^{60}\mathrm{Co}$	10 11 0	< 0.03
	$^{101}\mathrm{Rh}$		≤ 0.09 ≤ 0.09
	$^{102}\mathrm{Rh}$		< 0.005
	$^{108m}\mathrm{Ag}$		≤ 0.000 ≤ 0.018
	$^{121}\mathrm{Te}$		< 0.36
	133 Ba		< 0.006
	$^{137}\mathrm{Cs}$	< 0.8	≤ 0.000 ≤ 0.018
	^{138}La	<u> </u>	0.085 ± 0.007
	¹⁴⁴ Ce		< 0.9
	¹⁵⁰ Eu		≤ 0.9 ≤ 0.033
	¹⁵² Eu		≤ 0.033 ≤ 0.10
	154Eu		≤ 0.10 ≤ 0.014
	176Lu	1.1 ± 0.4	0.32 ± 0.02
	²⁰⁷ Bi	1.1 ± 0.4	≤ 0.07
²³² Th	228 Ra	< 2.1	0.12 ± 0.07
111	228 Th	_	0.12 ± 0.07 0.33 ± 0.05
23511	235 U	≤ 1.3 ≤ 1.7	0.33 ± 0.05 1.5 ± 0.4
	231 Pa	≥ 1.7	
	^{227}Ac		≤ 0.28 0.47 ± 0.07
238U	234m Pa	< 90	
1 2000	226 Ra	≤ 28	≤ 3.4
	²¹⁰ Pb	15 ± 0.8	≤ 0.17
	210Pb		≤ 178

Energy Spectrum in the ROI - 1D Spectra (13,92 kg y)

406.5-keV peak area = **389(121)** counts
$$\chi^2/\text{n.d.f.} = 222/207 = 1.07$$

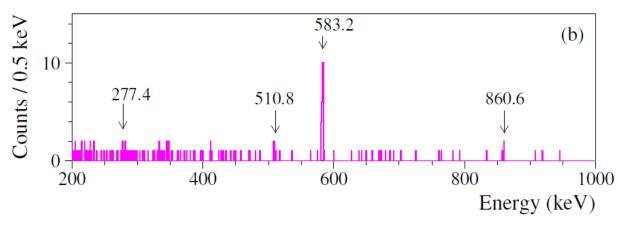

334.0-keV peak area = 615(144) counts with a reasonable fit quality $\chi^2/\text{n.d.f.} = 235/175 = 1.34$

$$T_{1/2} = \frac{N \ln 2 \varepsilon t}{S}$$

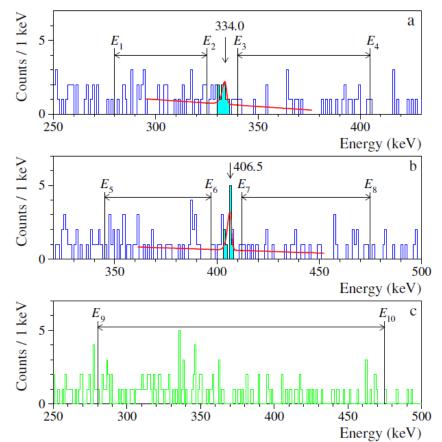
$$T_{1/2}^{406}(^{150}\text{Nd} \to ^{150}\text{Sm}(0_1^+)) = [1.03^{+0.47}_{-0.24}(\text{stat})] \times 10^{20} \text{ y}$$

$$T_{1/2}^{334}(^{150}\text{Nd} \to ^{150}\text{Sm}(0_1^+)) = [0.60^{+0.18}_{-0.11}(\text{stat})] \times 10^{20} \text{ y}$$

Coincidence in 2 HPGe Detectors (13,92 kg y)


Two γ quanta, 334.0 keV and 406.5 keV, emitted in de-excitation of the 740.5-keV 0⁺¹ level of ¹⁵⁰Sm, can be detected in coincidence by the HPGe counters of the detector system.

Some peculiarities in the 2D-spectrum:


- Vertical/Horizontal lines: ²¹⁴Bi, ²⁰⁸Tl, annih. 511
- Diagonal lines: ⁴⁰K, ²⁰⁸TI, ²¹⁴Pb, ²¹⁴Bi
- Point-like structures: ¹⁷⁶Lu

Example:

The energy of one detector is fixed at (2615 \pm 3 σ) keV (²⁰⁸TI)

Coincidence in 2 HPGe Detectorsemitted in De-excitation of the 740.5 keV 0⁺₁ level of ¹⁵⁰Sm (13,92 kg y)

The energy in one detector is fixed to the energy interval where γ quanta from the $^{150}Nd \rightarrow ^{150}Sm$ (0+, 740.5 keV) decay are expected:

$$(406.5 \pm 3\sigma) \text{ keV}$$

 $(334.0 \pm 3\sigma) \text{ keV}$

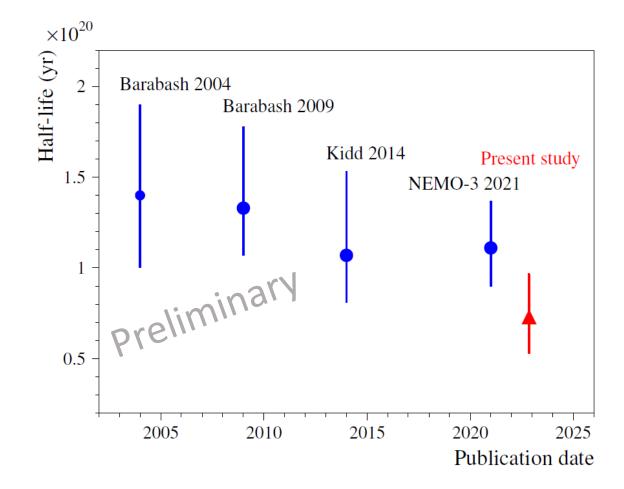
A random coincidence background when energy of events in one of the detectors was taken as (375 keV \pm 3 σ) keV

$$S^{334\&406} = 3.80 - 10.3 \text{ counts (68\% C.L.)}$$

 $\varepsilon^{334\&406} = 0.0004262(23)$

$$T^{334\&406}_{1/2}$$
 (150Nd \rightarrow 150Sm(0⁺₁)) = [0.98^{+0.69}_{-0.36}(stat)]×10²⁰ y.

Half-life of ¹⁵⁰Nd relative to the 2v2β decay to the 0⁺₁ excited level of ¹⁵⁰Sm


Source of systematic uncertainty	Relative uncertainty
	$(\% \text{ of } T_{1/2})$
Number of ¹⁵⁰ Nd nuclei	±1.7
Detection efficiency in 1-dimensional data	±3.2
Interval of fit for 334.0-keV peak	+1.0 -1.4
Bin of spectrum for 334.0-keV peak fit	+10.6 -7.2
Energy scale for 334.0-keV peak fit	+0.8
Model of background for 334.0-keV peak fit	-0.8
Interval of fit for 406.5-keV peak	+3.7 -5.1
Bin of spectrum for 406.5-keV peak fit	-12.0
Energy scale for 406.5-keV peak fit	-2.5
Model of background for 406.5-keV peak fit	+5.7 -4.2
Monte Carlo statistics for CC detection efficiency	± 0.5
Energy interval of events selection to build CC spectra	+11.9 -2.8
Energy interval of background estimation in CC data	+1.1 -4.3
1	-2.8 +1.1

Sources of systematic uncertainties of the half-life of 150 Nd relative to the $2v2\beta$ decay to the 740.5 keV 0^+_1 excited level of 150 Sm calculated by using the 334.0-keV, 406.5-keV peaks in the 1-dimensional spectrum, and the CC data. The uncertainties are assumed to be independent and added in quadrature.

Half-life of 150 Nd relative to the $2v2\beta$ decay to the first 0^+_1 excited level of 150 Sm obtained by analysis of the **1-dimensional spectrum**, **coincidence data**, and **their combinations**. "M = 1" denotes the results obtained from the analysis of the 1-dimensional spectrum built under the condition "multiplicity = 1".

Number	Method of analysis	Half-life, 10^{20} yr
in order		
1	1-Dimensional spectrum, 334.0 keV peak	$0.60^{+0.18}_{-0.11}(\text{stat})^{+0.07}_{-0.05}(\text{syst})$
1a	1-Dimensional spectrum, 334.0 keV peak, $M=1$	$0.63^{+0.20}_{-0.12}(\text{stat})^{+0.08}_{-0.06}(\text{syst})$
2	1-Dimensional spectrum, 406.5 keV peak	$1.03^{+0.47}_{-0.24}(\text{stat})^{+0.08}_{-0.15}(\text{syst})$
2a	1-Dimensional spectrum, 406.5 keV peak, $M=1$	$1.02^{+0.49}_{-0.25}(\text{stat})^{+0.08}_{-0.15}(\text{syst})$
3	Combination of 1 and 2	$0.61^{+0.14}_{-0.09}(\text{stat})^{+0.11}_{-0.16}(\text{syst})$
4	Coincidence data (comparison of the events	
	observed with known mean background)	$0.98^{+0.69}_{-0.36}(\text{stat})^{+0.12}_{-0.05}(\text{syst})$
5	Combination of 1a, 2a and 4 (see footnote 4)	$0.73^{+0.18}_{-0.11}(\text{stat})^{+0.16}_{-0.17}(\text{syst})$
6	Combination of 2a and 4 (see footnote 4)	$1.00^{+0.40}_{-0.21}(\text{stat})^{+0.14}_{-0.15}(\text{syst})$
5	Coincidence data (comparison of the events observed with known mean background) Combination of 1a, 2a and 4 (see footnote 4)	$0.98^{+0.69}_{-0.36}(\text{stat})^{+0.12}_{-0.05}(\text{syst})$ $0.73^{+0.18}_{-0.11}(\text{stat})^{+0.16}_{-0.17}(\text{syst})$

Half-life of ¹⁵⁰Nd relative to the 2v2β decay to the 0⁺₁ excited level of ¹⁵⁰Sm

$$\text{Pre}^{\text{lin}} T_{1/2}(^{150}\text{Nd} \to ^{150}\text{Sm}(0_1^+)) = [0.73^{+0.18}_{-0.11}(\text{stat})^{+0.16}_{-0.17}(\text{syst})] \times 10^{20} \text{ y}$$

Indication of 2v2β decay of ¹⁵⁰Nd to the 2+₁ excited level of ¹⁵⁰Sm

406.5-keV peak area = 389(121) counts 334.0-keV peak area = 615(144) counts

$$T_{1/2}(^{150}\mathrm{Nd} \to ^{150}\mathrm{Sm}(0_1^+)) \sim 1 \times 10^{20} y$$

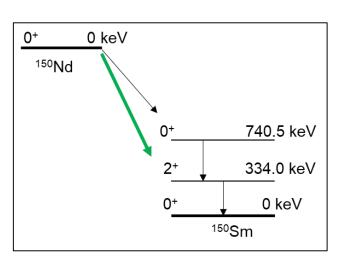
$$T_{1/2}(^{150}{
m Nd}
ightarrow \ ^{150}{
m Sm}(2_1^+)) \sim 2 \times 10^{20} \ y$$

More statistics is needed

Conclusions

Double-β transitions of ¹⁵⁰Nd to excited levels of ¹⁵⁰Sm were studied with the help of low-background HPGe γ spectrometry at the **Gran Sasso underground laboratory** of the INFN (Italy).

A highly purified neodymium-containing sample with a mass of 2.381 kg was measured over 5.845 y in a closed geometry by a four-crystal HPGe detector system, that allowed to detect γ quanta with energies 334.0 keV and 406.5 keV, emitted in the 2v2 β decay of ¹⁵⁰Nd to the 740.5 keV 0⁺₁ excited level of ¹⁵⁰Sm both in the 1-dimensional energy spectrum and in coincidence. By analysis of the 334.0-keV and 406.5-keV peaks, and of the coincidences between the γ quanta, the half-life of ¹⁵⁰Nd was calculated as:


$$T_{1/2}(^{150}\mathrm{Nd} \to ^{150}\mathrm{Sm}(0_1^+)) = [0.73^{+0.18}_{-0.11}(\mathrm{stat})^{+0.16}_{-0.17}(\mathrm{syst})] \times 10^{20} \,\mathrm{y}$$

However, taking into account the excess of events in the 334.0-keV peak:

$$T_{1/2}(^{150}\mathrm{Nd} \to ^{150}\mathrm{Sm}(0_1^+)) \sim 1 \times 10^{20} y$$

 $T_{1/2}(^{150}\mathrm{Nd} \to ^{150}\mathrm{Sm}(2_1^+)) \sim 2 \times 10^{20} \ y$

More statistics is needed

The theoretical calculations of the ¹⁵⁰Nd decay probability are in progress.

Preliminary calculations in the framework of the spherical QRPA multiplied by deformed overlap factors agree the hint