

Shubham Bansal (shubham.bansal@cern.ch) on behalf of the ATLAS collaboration

XII International Conference on New Frontiers in Physics (ICNFP), Kolymbari, Crete, Greece July 14, 2023

Bundesministerium für Bildung und Forschung

- Electroweak symmetry breaking (EWSB) well established by Higgs mechanism of Standard Model (SM)
- SM in agreement with experiments, though cannot explain dark matter (DM), matter asymmetry, smallness of neutrino masses, and many others
- Some of them can be addressed in Beyond Standard Model (BSM) scenarios, like:
 - 2 Higgs doublet model (2HDM): h, H, A, H^{\pm}
 - 3HDM: 2 additional Higgs doublet; Georgi-Machacek (GM) Model: 1 Higgs doublet + 2 triplets

- Multitude of BSM searches involving Higgs sector within ATLAS: <u>Public Results</u>
- Low and high mass searches with neutral Higgs:
 - Low mass $H/X \rightarrow \gamma \gamma [ATLAS-CONF-2023-035]$
 - High mass $X \rightarrow Z\gamma$ [ATLAS-CONF-2023-030]
- Searches involving neutral Higgs/pseudo-scalar in more complex systems:
 - $X \rightarrow SH \rightarrow VV\tau\tau$ [ATLAS-CONF-2023-031]
 - $A \rightarrow ZH[ATLAS-CONF-2023-034]$
 - $a \rightarrow \mu\mu$ in $t\bar{t}$ events [arXiv:2304.14247, Submitted to Phys. Rev. D]
- All searches use full Run-2 dataset (centre-of-mass energy = 13 TeV p-p collisions) with integrated luminosity of 140 fb⁻¹
- Closely related talks:
 - "Searches for BSM resonances in ATLAS", by Monica Verducci
 - "Searches for Dark Matter with the ATLAS Experiment at the LHC", by Tae Min Hong

- 2 different measurements: Generic spin-0 $m_X = 66 110 \text{ GeV} (\text{model independent})$, and $m_h < 125 \text{ GeV} (\text{model dependent})$
- Backgrounds: non-resonant background ($\gamma\gamma/\gamma$ jet / jet jet), Drell-Yan ($Z \rightarrow ee$) process
- 2 types of Boosted Decision Trees (BDTs) used: e/γ classification BDT to reduce e fakes, signal
 (S) / background (B) categorisation BDT (cat. BDT)
- Different regions targeted based on photon conversion categories:
 - model independent: 3, UU, UC, CC [U = unconverted, C = converted]
 - model dependent: 9, {UU, UC, CC} × {3 regions of cat. BDT}

- Fit variable: invariant mass of di-photon system, $m_{\gamma\gamma}$
- Signal and Drell-Yan background modelled by double-sided Crystal Ball (DSCB) function, nonresonant background modelled by exponentiated polynomials
- Search dominated by non-resonant background modelling uncertainties

- No evidence of signal observed
- Predicted in Next-to-two Higgs doublet model (N2HDM), Axion-like-particles (ALP)...

High mass $X \to Z \gamma$

Generic spin-0 (gg) / spin-2 (gg, qq) $m_X = 220 - 3400$ GeV, $X \rightarrow Z(\rightarrow ll)\gamma$, $l = e/\mu$

- Dominant Background: non-resonant $Z(\rightarrow II)\gamma$, Z+jets
- electron identification (ID) difficult at high masses due to large boost, use a BDT based ID: improve signal efficiency from 6% to 12.7%, at high masses, when merged with default ID
- Fit variable: $m_{Z\gamma}$, background modelling uncertainties forms the largest systematics, local excess of 2.3 σ observed at $m_X = 420$ GeV

$\mathbf{X} \to \mathbf{S} \mathbf{H} \to \mathbf{V} \mathbf{V} \boldsymbol{\tau} \boldsymbol{\tau}$

• $S \rightarrow WW/ZZ, H(125) \rightarrow \tau\tau$, probe high masses: $m_X = 500 - 1500$ GeV, $m_S = 200 - 500$ GeV ATLAS-CONF-2023-031

S: generic high mass scalar Focus on the most sensitive: $1l2\tau_{had}/2l2\tau_{had}$ + jets final state

• Dominant backgrounds: τ_{had} -fakes (data driven fake-factor method), VV(MC based)

• 3 signal regions (SRs): $WW1l2\tau_{had}$, $WW2l2\tau_{had}$, $ZZ2l2\tau_{had}$ (2 leptons with opposite sign)

• BDTs used to separate **S** from **B**, parametrised in m_X for an m_S

Fit variable: BDT score in each SR

- Combined limit dominated by $WW1l2\tau_{had}$, improves by 26-53% on adding the 2 lepton channels
- Data limits compared with predictions of Next-to-minimalistic supersymmetric SM (NMSSM)

• $Z \rightarrow \nu \nu / l\bar{l}, H \rightarrow bb/t\bar{t}$, with $m_A = 350 - 1200$ GeV, $m_H = 130 - 800$ GeV

Final state: $\nu\nu b\bar{b}: E_{T_{miss}}$ + jets $llt\bar{t}: leptons + jets$

Dominant backgrounds: $\nu\nu b\bar{b}$ - $t\bar{t}$, Z+ heavy flavour (Zhf) $l\bar{l}t\bar{t}$ - $t\bar{t}Z$, $t\bar{t}$

$\mathbf{A} \rightarrow \mathbf{Z}\mathbf{H} \rightarrow \nu\nu\mathbf{b}\mathbf{\bar{b}}$

- Fit variable: transverse mass of A boson defined for 2 and 3 b-tag region ATLAS-CONF-2023-034
- Dominant uncertainties:
 - Iow m_A (**Zhf** modelling), high m_A (statistical and systematic at same level)

- Small data excess around $550 < m_T(VH) < 650 \,\text{GeV}$
- Channel sensitive at higher m_A for $m_H < 350 \,\text{GeV}$

$A \rightarrow ZH \rightarrow l\bar{l}t\bar{t}$

ATLAS-CONF-2023-034

• Fit variable: $\Delta m = m_A - m_H$ (difference of reconstructed masses of A and H)

• Small data excess around $(m_A, m_H) = (650, 450)$ GeV: local excess of 2.85 σ

• Channel sensitive for $m_H > 350 \,\text{GeV}$

• Light pseudo-scalar search, $a \rightarrow \mu \mu$ targeted due to excellent resolution, $15 < m_a < 72$ GeV

arXiv:2304.14247

 $l = e/\mu$ 3 leptons + jets final state

- Dominant backgrounds: $t\bar{t}Z$, WZ, μ fakes
- 2 SRs $(n_{e/\mu}, m_{\mu\mu}, n_{jet,b-jet})$ each for $e\mu\mu/\mu\mu\mu$ channel
- 2 categories of CRs: on-Z CR to constrain $t\bar{t}Z$, $t\bar{t}$ CR to constrain μ fakes

arXiv:2304.14247

- Fit variable: invariant mass of di-muon system, $m_{\mu\mu}$
- Slight local excess of 2.4 σ at 27 GeV

• Interpreted in single top-quark Yukawa coupling model with cross section calculated at next-toleading (NLO) order with $a \rightarrow \mu\mu$ decays only

- ATLAS collaboration actively involved in the search for new physics including the Higgs sector
- New and improved techniques employed to increase the sensitivity of analyses targeting various final states and topologies
- No signs of new physics beyond the SM observed so far (few local excesses seen which needs to be investigated)
- Exciting times ahead: Ongoing Run-3 dataset will increase the sensitivity of searches for new BSM couplings including additional particles in the Higgs sector

Back-up

- Impressive ATLAS detector resolution + continuously evolving new techniques: lepton ID, flavour tagging of jets..etc
- Define a suitable discriminant to separate S from B: BDTs, invariant mass of the targeted particle...

- Set upper limits on the signal strength using a likelihood fit to data
- Interpret results in variety of models

Other recent results

High mass $X \to Z \gamma$

~ .	Regions				
Cut	2L (CR)	e μ (CR)	1L (VR)	Hlo/Hhi(CR)	Hin (SR)
N jets	2-5				
N <i>b</i> -jets	> 2				
m_{H}^{cand}	> 50 GeV				
N hadronically decaying τ -leptons	0				
$p_{\mathrm{T}}(V)$	> 150 GeV				
$\min_i \Delta \phi(\vec{E}_{\rm T}^{\rm miss}, \vec{p}_i^{\rm jet})$	$> \pi/10$				
$\Delta R(b_1,b_2)$	< 3.3 (2 <i>b</i> -jets)				
	$< 3.5 (\geq 3 b - jets)$				
N leptons	2 1			0	
Lepton flavour	ее/µµ еµ е/µ -				
$p_{\mathrm{T}}(\ell_1)$	> 27 GeV -				
$ m_Z^{\text{cand}} - m_Z $	< 10 GeV			-	
$S_{\rm MET}$	< 5	-	> 3	> 10	
m _{top} ^{near}	- > 180 GeV			GeV	
m ^{far} _{top}	- > 200 GeV				
$ m_H^{\text{cand}} - m_H^{\text{hypo}} $	$- > 0.2 \cdot m_H^{\text{hypo}} < 0.2 \cdot m_H^{\text{hypo}}$				

lltt

Cut	Regions					
Cut	ss (CR)	L3hi_Zout (VR)	Hlo/Hhi(CR)	Hin (SR)	L3lo_Zin (VR)	
N leptons	3					
$p_{\mathrm{T}}\left(\ell_{1} ight)$	> 27 GeV					
N jets	≥ 4					
N <i>b</i> -jets	2					
$\left \eta_{H- ext{cand}}^{ ext{ZH-r.fr.}} ight $	$< 2.2 + 0.0004 \cdot m_H^{\text{cand}} - 0.0011 \cdot m_A^{\text{cand}}$					
$p_{\mathrm{T}}\left(\ell_{3} ight)$	> 13 GeV > 7 GeV & < 13 GeV				> 7 GeV & < 13 GeV	
Lepton flavour	eeμ/μμe eee/eeμ/μμe/μμμ					
OSSF lepton pairs	0	0 ≥ 1				
$ m_Z^{\text{cand}} - m_Z $	< 20 GeV	> 10 GeV & < 20 GeV < 10 GeV				
$ m_{H}^{\text{cand}} - m_{H}^{\text{hypo}} $ $m_{H}^{\text{hypo}} < 500 \text{ GeV}$ $m_{H}^{\text{hypo}} > 500 \text{ GeV}$		-	$> 0.32 \cdot m_H^{ m hypo}$ $> 0.24 \cdot m_H^{ m hypo}$	$< 0.32 \cdot m_H^{ m hypo} \ < 0.24 \cdot m_H^{ m hypo}$	-	

Channels	Selections
$WW1\ell 2 au_{ m had}$	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$
WW2ℓ2τ _{had}	exactly two light leptons with opposite-sign: $p_T > 10 \text{ GeV}$, $ \eta < 2.5$ exactly two RNN medium τ_{had} with opposite-sign: $p_T > 20 \text{ GeV}$, $ \eta < 2.5$ invariant dilepton mass: $m_{\ell\ell} > 12 \text{ GeV}$ Z-veto ($ m_{\ell\ell} - m_Z > 10 \text{ GeV}$) for same-flavor leptons $\Delta R_{(\tau_0, \tau_1)} \leq 2$ $N_{b-jets} == 0$
$ZZ2\ell 2 au_{ m had}$	$ \begin{array}{l} \mbox{exactly two same-flavor light leptons with opposite-sign: $p_T > 10 \ GeV, $ \eta < 2.5$ exactly two RNN medium τ_{had} with opposite-sign: $p_T > 20 \ GeV, $ \eta < 2.5$ Z-peak selection (m_{\ell\ell} - m_Z < 10 \ GeV) \Delta R_{(\tau_0, \tau_1)} \leq 2 N_{b-jets} == 0 \end{array} $

 $\mathbf{X} \rightarrow \mathbf{SH} \rightarrow \mathbf{VV} \tau \tau$

 $\mathbf{X} \rightarrow \mathbf{SH} \rightarrow \mathbf{VV} \tau \tau$

$\mathbf{a} \rightarrow \mu \mu \text{ in } \mathbf{t} \mathbf{\bar{t}}$

	Signa	al Regions	on-Z Con	tī Control Region	
Channel	еµµ	μμμ	еµµ	μμμ	еµµ
Binning	$m^a_{\mu\mu}$	$m^a_{\mu\mu}$	$n_{\rm jets}, n_{b-{\rm jets}}$	$n_{\rm jets}, n_{b-\rm jets}$	$p_{\mathrm{T}}^{\mu,\mathrm{fake}}$
nelectrons	1	0	1	0	1
n _{muons}	2	3	2	3	2
	$12 < m^a_{\mu\mu} < 77$	$12 < m^a_{\mu\mu} < 77$	$77 < m^a_{\mu\mu} < 107$	$77 < m^a_{\mu\mu} < 107$	$12 < m^a_{\mu\mu} < 77$
$m_{\mu\mu}$ [GeV]		and		or	
	-	$m_{\mu\mu}^{\rm other} < 77 \text{ or} > 107$	-	$77 < m_{\mu\mu}^{\rm other} < 107$	-
n _{jets}		1 or 2			
n _{b-jets}		1			

$120 \leq m_{H^+} \leq 160 \text{ GeV}$