Measurements of Higgs boson production and decay rates and their interpretation with the ATLAS experiment

David Reikher On behalf of the ATLAS collaboration ICNFP 2023

Cross sections

Simplified Template Cross Sections (STXS)

Multiple non-overlapping phase space regions based on production mode of the Higgs boson, kinematics of the process

Fiducial cross section

Cross sections measured in a phase space closely matching detector acceptance

Interpretations

אוניברסיטת TEL AVIV תלאביב VNIVERSITY

- BSM physics modify the Higgs couplings
- Deformations are model dependent, but which model?
- Two frameworks for "parametrizing our ignorance":

Kappa framework

Coupling of Higgs to p is modified by $\kappa_{\rm p}$

$$\kappa_p^2 = \sigma_p / \sigma_p^{\rm SM}$$
$$\kappa_p = 1 \Rightarrow \rm SM$$

For loop induced processes sometimes use effective modifiers, e.g. $\kappa_{_{Z\gamma}}$

Assumes tree-level coupling structure of the SM

David Reikher

$ggF H \rightarrow WW^* \rightarrow e\nu\mu\nu$

Data: 139 fb⁻¹, full ATLAS Run 2

- Measurements: Fiducial single + double $d\sigma$
- Final states with <=1 j are considered
- VBF, VH are fixed to SM and considered backgrounds
- Fit is performed to $m_{\scriptscriptstyle T}$ in each bin of observable

$$m_T = \sqrt{\left(E_T^{ll} + E_T^{\text{miss}}\right)^2 - \left|\mathbf{p}_T^{ll} + \mathbf{E}_T^{\text{miss}}\right|^2} \qquad E_T^{ll} = \sqrt{\left|\mathbf{p}_T^{ll}\right|^2 + m_{ll}^2}$$

• Dominant sources of uncertainty:

- Jet, muon reconstruction
- *t*, *WW*backgrounds
- Difficulty in modeling $Z\gamma$

Measurements are consistent with the SM

4

 \vee VBF H $\rightarrow WW^* \rightarrow e\nu\mu\nu$

HIGG-2020-25

Data: 139 fb⁻¹, full ATLAS Run 2

- Measurements: Fiducial differential + inclusive cross sections, SMEFT interpretation
- VBF direct probe of Higgs coupling to W/Z bosons
- Simultaneous binned likelihood fit of MVA discriminants in several kinematic regions.
 - e.g. In the SR, two BDTs are trained to separate VBF from top+VV and top+VV from other backgrounds

ggF

VBF

- Measurements: σ in full phase space, STXS
- New from last iteration $(arXiv:1808.09054, 36.1 \text{ fb}^{-1})$
 - Larger dataset
 - qqF in > 2 j final state increase in statistics
 - Cross section reported in 11 STXS bins
- Analysis performed in 4 regions for ggF $N_i \!=\! 0,\! 1,\! \geq\! 2$, for VBF $N_i \!\geq\! 2$
- Fit to m_{τ} in ggF regions, fit to DNN trained on VBF vs. others for VBF

David Reikher

Measurements are consistent with the SM

 $VH \rightarrow WW^* \rightarrow l\nu l\nu + l\nu jj$

Data: 139 fb⁻¹, full ATLAS Run 2

- Performed in 4 channels
- Different MVA discriminants adapted to background composition are used
 - ANN for multiclassification of signal + multiple backgrounds
 - RNN for S/B classification, events as arbitrarily long sequences of objects
 - BDT
- Used input variables based on reconstructed object kinematics e.g. $E_T^{\rm miss}, m_T^W, p_T^{l_0}$

Dominant systematic uncertainties in WH:

- RNN shape due to RNN mismodelling
 W(Z/2*) WWW background
- $W(Z/\gamma^*), WWW$ background

ATLAS-CONF-2022-067

Channel	Backgrounds
OS,2I	$t\bar{t},Wt$
SS,2I	$W(Z/\gamma^*), W + \gamma, W + \text{jets}$
31	$W(Z/\gamma^*), WWW$
41	ZZ, WWZ

David Reikher

Measurements consistent with SM

Combination of differential cross section measurements in $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$

Data: 139 fb⁻¹, full ATLAS Run 2

- Combination of arXiv:2004.03969 and arXiv:2202.00487
- Inclusive measurement for all H production modes
- Extrapolation to common phase space of both channels and combination
- Unprecedented 7% precision for $\sigma(pp \rightarrow H)$ measurement due to larger dataset and combination of channels
- Measurement of differential cross sections p_T^H , $|y_H|$, N_j , $p_T^{\text{lead. jet}}$ each probing different aspect of Higgs production

Measurements are consistent with the SM

David Reikher

HIGG-2022-04

Sensitive to coupling to b/c quarks via ggF

Combined measurements

Hereit Content of the second second

HIGG-2021-23

Combination of multiple Higgs analyses in multiple decay channels and production processes was performed (Nature 607, 52-59 (2022))

Combined measurements are consistent with the SM

Combination – kappa interpretation

Nature 607, 52-59 (2022) HIGG-2021-23

> Two modifiers - $\kappa_{_{V}}$ (vector bosons), $\kappa_{_{F}}$ (Fermions) Assuming no BSM contributions K_{F}

Constraints on κ_{c}, κ_{h}

Expected

Obeania

80

100

ATLAS

VH. $H \rightarrow c\overline{c}$

0 lepton Exp.= 40 × SM Obs.= 35 × SM

Exp.= $60 \times SM$ Obs.= $50 \times SM$ **2 lepton** Exp.= $51 \times SM$ Obs.= $49 \times SM$

Combination Exp.= 31 × SM Obs.= 26 × SM

ō

√s=13 TeV, 139 fb

20

40

60

- Higgs coupling to cc is very challenging low BR, high jet background
- Combining VHcc and VHbb

yields a 95%CL constraint $\left|\frac{\kappa_c}{\kappa_b}\right| < 4.5 \Rightarrow$ Higgs coupling is weaker to c than to b at 95% CL

- In $H \rightarrow ZZ^* \rightarrow 4l + H \rightarrow \gamma\gamma$, $d\sigma/dp_T^H$ is used to derive limits on κ_c, κ_b .
 - Most stringent constraints on κ_c in two scenarios decays to BSM particles allowed/not allowed

Combination EFT interpretation

ATL-PHYS-PUB-2022-037

- First ATLAS global EFT fit
- Framework allows to include additional measurements to improve the combination
- Multiple combined measurements:
 - ATLAS Higgs boson data
 - ATLAS EW data
 - EW precision observables (EWPO) from LEP and SLC
- Cross sections and branching ratios reparametrized in terms of wilson coefficients in STXS, constraints on 28 Wilson coefficients are determined

Run 3 $H \rightarrow ZZ^* \rightarrow 4l + H \rightarrow \gamma\gamma$

Data: 31.4 fb⁻¹ @13.6 TeV ($H \rightarrow \gamma \gamma$) 29.0 fb⁻¹ @13.6 TeV ($H \rightarrow ZZ^* \rightarrow 4l$)

- Measurement: Full phase space σ + fiducial & full phase space σ in each channel
- Each channel measured in fiducial phase space and extrapolated to full phase space for combination

Conclusion

• Run 2:

- Differential and inclusive cross sections from recent measurements are presented in the ATLAS experiment in STXS, full and fiducial phase spaces.
- Combined measurements are interpreted in the SMEFT and kappa frameworks
- Improved precision compared to Run-1 due to increased statistics and improved analysis methods, entering precision measurements era.
- Run 3:
 - First analyses at 13.6 TeV have been published
- All results are consistent with the SM
- Dataset of LHC is expected to increase by a factor of 20 by 2040

Thank you!

Backup

SM Higgs boson production and decay modes

Coupling $\propto M_{Z/W}^2, \propto M_f$ M_H = 125 GeV arXiv:1207.7214 (2012)

0.23%

8.2%

WW*

2.9%

ZZ* 2.6%

μμ 0.02%

> ττ_ 6.3%

Ζγ

bb 58.2%

0.15%

Data taking in ATLAS

Run 1, 2011-2012

- 7-8 TeV
- Higgs
 discovery

Run 2, 2015-2018

- 13 TeV
- Higgs couppling precision measurements in multiple channels
- Up to 50% better signal sensitivities than those expected from simple increase in data

Run 3, 2022-

- 13.6 TeV
- Data taking ongoing

UNIVERSITY תלאביב

Recent Higgs coupling measurements in ATLAS

	\sqrt{s} = 13 TeV	
ggF H→WW*→ $eνµν$	Fiducial $d\sigma$	arXiv:2301.06822
$(VBF + ggF) \rightarrow WW^* \rightarrow e\nu\mu\nu$	FIG. $a\sigma, \sigma$, SMEFT Full σ , STXS	arXiv:2207.00338
$VH\;H\! ightarrow\!WW^* ightarrow(l u l u + l u jj)$	Full σ	ATLAS-CONF-2022-067
HZZ* $ ightarrow$ 4 l + H $ ightarrow\gamma\gamma$	Full $d\sigma, \sigma, \kappa$	arXiv:2207.08615
$H \rightarrow cc$	κ	arxiv:2201.11428v4
	\sqrt{s} = 13.6 TeV	
HZZ* $ ightarrow$ 4 l + H $ ightarrow$ $\gamma\gamma$	Fiducial & Full σ	arXiv:2306.11379
	Combined SMEFT interpretation	ATL-PHYS-PUB-2022-037
Combinations & interpretations	Combined measurement of Full $\sigma, STXS, \kappa$	Nature 607, 52-59 (2022)
	SMEFT constraints from H* ${\rightarrow}ZZ{\rightarrow}(4l{+}2l2\nu)$	ATL-PHYS-PUB-2023-012

EFT interpretation off-shell ggF $H \rightarrow ZZ \rightarrow (4l+2l2\nu)$

 $c_{arphi G}, c_{tarphi}$ - coeffs. In Warsaw basis

Differential Cross Sections Sensitivity of Some Observables

- p_T^H at low values, sensitive to non-perturbative QCD effects, at high values sensitive to perturbative QCD calculations + BSM contributions
- $|y_{\scriptscriptstyle H}|$ sensitive to PDFs
- $N_{\rm jets}, p_T^{j0}$ probe theoretical modeling of high pT QCD radiation in higgs production, sensitive to H production process
- $|y_{j0}|$ probes theoretical modeling of hard gluon and quark emission
- $cos\theta^*$ sensitive to spin structure of produced diparticle pairs

Combination Details

Likelihood

Nature 607, 52-59 (2022)

Analyses used in combination

Fits deployed in Decay mode Targeted production processes \mathcal{L} [fb⁻¹] $H \rightarrow \gamma \gamma$ ggF, VBF, WH, ZH, $t\bar{t}H$, tH 139 A11 ggF, VBF, WH + ZH, $t\bar{t}H + tH$ 139 $H \rightarrow ZZ$ All $t\bar{t}H + tH$ (multilepton) 36.1 All but fit of kinematics $L(\boldsymbol{\alpha}, \boldsymbol{\theta}, \text{data}) = \prod_{k \in \text{cat}} \prod_{b \in \text{bins}} P(n_{k,b} | n_{k,b}^{\text{signal}}(\boldsymbol{\alpha}, \boldsymbol{\theta}) + n_{k,b}^{\text{bkg}}(\boldsymbol{\theta})) \prod_{\boldsymbol{\theta} \in \boldsymbol{\theta}} G(\boldsymbol{\theta}),$ $H \rightarrow WW$ ggF, VBF 139 All WH, ZH36.1 All but fit of kinematics $n_k^{\text{signal}} = \mathcal{L}_k \sum_i \sum_f (\sigma_i B_f) (A\epsilon)_{if}^k,$ $t\bar{t}H + tH$ (multilepton) 36.1 All but fit of kinematics All but fit of kinematics $H \rightarrow Z\gamma$ 139 inclusive $H \rightarrow b\bar{b}$ WH, ZH139 All VBF 126 All $t\bar{t}H + tH$ 139 All inclusive 139 Only for fit of kinematics ggF, VBF, WH + ZH, $t\bar{t}H + tH$ 139 $H \rightarrow \tau \tau$ All $t\bar{t}H + tH$ (multilepton) All but fit of kinematics 36.1 $ggF + t\bar{t}H + tH, VBF + WH + ZH$ All but fit of kinematics $H \rightarrow \mu \mu$ 139 $H \rightarrow c\bar{c}$ WH + ZH139 Only for free-floating κ_c $H \rightarrow \text{invisible}$ VBF 139 κ models with $B_{\rm u}$ & $B_{\rm inv}$ ZH 139 κ models with $B_{\rm u}$ & $B_{\rm inv}$

$\sigma \times B\,$ of each process after combination

Combination allowing BSM

Nature 607, 52-59 (2022) HIGG-2021-23

- $B_{\rm inv}\,$ Branching ratio to invisible BSM particles
- B_{u} Branching ratio to
- BSM particles that cannot be detected due to large backgrounds

(ggF+VBF) $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ improvement

$H \rightarrow ZZ^* \rightarrow 4l + H \rightarrow \gamma\gamma$ including Run-3 result

Event Displays

VBF $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ canidate

