Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
●00		000	000000000000	0000

Unpolarized parton distribution functions in QED

Andrej Arbuzov

BLTP, JINR, Dubna

(with U. Voznaya)

12th ICNFP conference, Kolymbari, Crete, Greece

21st July 2023

Andrej Arbuzov

Unpolarized parton distribution funct

21st July 2023

e^+e^- colliders	QED 000	Higher order logs 000000000000	Outlook 0000

Outline

3 QED

4 Higher order logs

e^+e^- colliders	QED 000	Higher order logs	Outlook 0000

Motivation

- Development of physical programs for future high-energy e^+e^- colliders and not only
- $\bullet\,$ Having high-precision theoretical description of basic e^+e^- processes is of crucial importance
- Two-loop calculations are in progress, but higher-order QED corrections are also important
- The formalism of QED parton distribution functions (PDFs) can give a fast estimate of the bulk of higher-order effects

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
000	•00	000		0000

Future e^+e^- collider projects

Linear Colliders

- ILC, CLIC
- ILC: technology is ready, not to be built in Japan (?)

E_{tot}

- ILC: 91; 250 GeV $1~{\rm TeV}$
- \bullet CLIC: 500 GeV 3 TeV

 $\mathcal{L}\approx 2\cdot 10^{34}~\mathrm{cm}^{-2}\mathrm{s}^{-1}$

Stat. uncertainty $\sim 10^{-3}$

Circular Colliders

- FCC-ee, TLEP
- CEPC
- $\mu^+\mu^-$ collider (μ TRISTAN)

 E_{tot}

• 91; 160; 240; 350 GeV

 $\mathcal{L}\approx 2\cdot 10^{36}~\mathrm{cm}^{-2}\mathrm{s}^{-1}~(4~\mathrm{exp.})$

Stat. uncertainty $\sim 10^{-6}$

Tera-Z mode!

4/26

Motivation	e^+e^- colliders $0 \neq 0$	QED	Higher order logs	Outlook
000		000	000000000000	0000

Super Charm-Tau Factory Projects

Budker Institute of Nuclear Physics + Sarov and/or China

Colliding electron-positron beams with c.m.s. energies from 2 to 7 GeV with unprecedented high luminosity $10^{35} cm^{-2} c^{-1}$

The electron beam will be longitudinally polarized

The main goal of experiments at the Super Charm-Tau Factory is to study the processes charmed mesons and tau leptons, using a data set that is 2 orders of magnitude more than the one collected by BESIII

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
000		000	000000000000	0000

Estimated experimental precision

Quantity		tity	Theory err	or	Exp. error	
	M_W	MeV]	4		15	
Now:	$\sin^2 \theta_a^i$	$[10^{-5}]$	4.5		16	
	Γ_Z [M	ĨeV]	0.5		2.3	
	$R_b[10]$	-51	15		66	
Quantity	ILC	FCC-ee	CEPC	Р	rojected the	eory error
M_W [MeV]	3–4	1	3		1	
$\sin^2 \theta_{eff}^l [10^{-5}]$	1	0.6	2.3		1.5	
Γ_Z [MeV]	0.8	0.1	0.5		0.2	
$R_b[10^{-5}]$	14	6	17		5-10)

The estimated error for the theoretical predictions of these quantities is given, under the assumption that $O(\alpha \alpha_s^2)$, fermionic $O(\alpha^2 \alpha_s)$, fermionic $O(\alpha^3)$, and leading four-loop corrections entering through the ρ -parameter will become available.

Motivation 000	e^+e^- colliders 000	QED ●oo	Higher order logs 000000000000	Outlook 0000

Perturbative QED (I)

Fortunately, in our case the perturbation theory can be applied:

$$\frac{lpha}{2\pi} \approx 1.2 \cdot 10^{-3}, \quad \left(\frac{lpha}{2\pi}\right)^2 \approx 1.4 \cdot 10^{-6}$$

Moreover, other effects: hadronic vacuum polarization, (electro)weak contributions, hadronic pair emission, etc. are small and can be treated one-by-one separately

Nevertheless, there are some enhancement factors:

1) First of all, the large logarithm $L \equiv \ln \frac{\Lambda^2}{m_e^2}$ where $\Lambda^2 \sim Q^2$ is the momentum transferred squared, e.g., $L(\Lambda = 1 \text{ GeV}) \approx 16$ and $L(\Lambda = M_Z) \approx 24$.

2) The energy region at the Z boson peak $(s \sim M_Z^2)$ requires a special treatment since factor M_Z/Γ_Z appears in the annihilation channel

Fig.: The parameter γ_{nr} characterizing the size of the QED corrections,

$$\gamma_{nr} = \left(\frac{\alpha}{\pi}\right)^n \left(2\ln\frac{M_Z^2}{m_f^2}\right)^r, \qquad 1 \le r \le n$$

Figure from [S.Jadach and M.Skrzypek, arXiv:1903:09895]

Perturbative QED (III)

Methods of resummation of QED corrections

- Resummation of vacuum polarization corrections (geometric series)
- Yennie–Frautschi–Suura (YFS) soft photon exponentiation and its extensions, see, e.g., **PHOTOS**
- Resummation of leading logarithms via QED structure functions or QED PDFs (E.Kuraev and V.Fadin 1985;
 A. De Rujula, R. Petronzio, A. Savoy-Navarro 1979)

N.B. Resummation of real photon radiation is good for inclusive observables...

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
000		000	•00000000000	0000

Leading and next-to-leading logs in QED The QED leading (LO) logarithmic corrections

$$\sim \left(rac{lpha}{2\pi}
ight)^n \ln^n rac{s}{m_e^2}$$

were relevant for LEP measurements of Bhabha, $e^+e^-\to\mu^+\mu^-$ etc. for $n\leq 3$ since $\ln(M_Z^2/m_e^2)\approx 24$

NLO contributions

$$\sim \left(rac{lpha}{2\pi}
ight)^n \ln^{n-1} rac{s}{m_e^2}$$

with n = 3 are required for future e^+e^- colliders

In the collinear approximation we can get them within the NLO QED structure function formalism

- F.A.Berends, W.L. van Neerven, G.J.Burgers, NPB'1988
- A.A., K.Melnikov, PRD'2002; A.A. JHEP'2003

Motivation 000	e^+e^- colliders	QED 000	Higher order logs o●ooooooooooo	Outlook 0000
QED NLC) master form	ula	N e	e 🥢
The NLO H reads	<mark>3habha</mark> cross sect	ion		Y.
$d\sigma = \sum_{a \ b \ c \ da}$	$\sum_{z \in \overline{z}} \int_{\overline{z}_1}^1 dz_1 \int_{\overline{z}_2}^1 dz$	$_{2}\mathcal{D}_{ae}^{\mathrm{str}}(z_{1})\mathcal{D}_{b\bar{e}}^{\mathrm{str}}(z_{2})$		
$\times \left[d\sigma \right]$	$\int_{ab\to cd}^{(0)} (z_1, z_2) + d\bar{\sigma}_a^{(0)}$	$\left[\substack{1 \\ b \to cd} (z_1, z_2) \right]$		e
$ imes \int_{ar y_1}^1$	$\frac{dy_1}{Y_1}\int_{\bar{y}_2}^1\frac{dy_2}{Y_2}\mathcal{D}_{ec}^{\mathrm{frg}}\left($	$\left(\frac{y_1}{Y_1}\right) \mathcal{D}_{\bar{e}d}^{\mathrm{frg}} \left(\frac{y_2}{Y_2}\right)$)	
$+\mathcal{O}\left(ight.$	$\left(\alpha^n L^{n-2}, \frac{m_e^2}{s}\right)$			

 $\alpha^2 L^2$ and $\alpha^2 L^1$ terms are completely reproduced [A.A., E.Scherbakova, JETP Lett. 2006; PLB 2008] || $\bar{e} \equiv e^+$

Motivation 000	e^+e^- colliders	QED 000	Higher order logs	Outlook 0000

High-order ISR in e^+e^- annihilation (I)

$$\begin{aligned} \frac{d\sigma_{e^+e^-}}{ds'} &= \frac{1}{s}\sigma^{(0)}(s') \left[\mathcal{D}_{e^+e^+} \left(N, \frac{\mu^2}{m_e^2} \right) \tilde{\sigma}_{e^+e^-} \left(N, \frac{s'}{\mu^2} \right) \mathcal{D}_{e^-e^-} \left(N, \frac{\mu^2}{m_e^2} \right) \right. \\ &+ \mathcal{D}_{\gamma e^+} \left(N, \frac{\mu^2}{m_e^2} \right) \tilde{\sigma}_{e^-\gamma} \left(N, \frac{s'}{\mu^2} \right) \mathcal{D}_{e^-e^-} \left(N, \frac{\mu^2}{m_e^2} \right) \\ &+ \mathcal{D}_{e^+e^+} \left(N, \frac{\mu^2}{m_e^2} \right) \tilde{\sigma}_{e^+\gamma} \left(N, \frac{s'}{\mu^2} \right) \mathcal{D}_{\gamma e^-} \left(N, \frac{\mu^2}{m_e^2} \right) \\ &+ \mathcal{D}_{\gamma e^+} \left(N, \frac{\mu^2}{m_e^2} \right) \tilde{\sigma}_{\gamma \gamma} \left(N, \frac{s'}{\mu^2} \right) \mathcal{D}_{\gamma e^-} \left(N, \frac{\mu^2}{m_e^2} \right) \right] \end{aligned}$$

J. Ablinger, J. Blümlein, A. De Freitas and K. Schönwald, "Subleading Logarithmic QED Initial State Corrections to $e^+e^- \rightarrow \gamma^*/Z^{0^*}$ to $O(\alpha^6 L^5)$," NPB 955 (2020) 115045

$\underset{000}{\mathrm{Motivation}}$	e^+e^- colliders	QED Highe	r order logs Outlook
TT. 1			

High-order ISR in e^+e^- annihilation (II)

$$\frac{d\sigma_{e^+e^-\to\gamma^*}}{ds'} = \frac{1}{s}\sigma^{(0)}(s')\sum_{a,b=e^-,\gamma,e^+} D_{ae^-}\otimes\tilde{\sigma}_{ab\to\gamma^*}\otimes D_{be^+}$$

Table. Orders of different contributions:

$a \backslash b$	e+	γ	е-
e ⁻	$D_{e^-e^-}D_{e^+e^+}\sigma_{e^-e^+}$	$D_{\gamma e^-} D_{e^- e^-} \sigma_{e^- \gamma}$	$D_{e^-e^-} D_{e^-e^+} \sigma_{e^-e^-}$
	LO(1)	NLO $(\alpha^2 L)$	NNLO $(\alpha^4 L^2)$
γ	$D_{\gamma e^-} D_{e^+ e^+} \sigma_{e^+ \gamma}$	$D_{\gamma e^-} D_{\gamma e^+} \sigma_{\gamma \gamma}$	$D_{\gamma e^{-}} D_{e^{-}e^{+}} \sigma_{e^{-}\gamma}$
	NLO $(\alpha^2 L)$	NNLO $(\alpha^4 L^2)$	NLO $(\alpha^4 L^3)$
e^+	$D_{e^+e^-}D_{e^+e^+}\sigma_{e^+e^+}$	$D_{e^+e^-}D_{\gamma e^+}\sigma_{e^+\gamma}$	$D_{e^+e^-}D_{e^-e^+}\sigma_{e^+e^-}$
	NNLO $(\alpha^4 L^2)$	NLO $(\alpha^4 L^3)$	LO $(\alpha^4 L^4)$

Contributions from $D_{e^-e^+}$ and $D_{e^+e^-}$ are missed. They are relevant starting from $\mathcal{O}(\alpha^4 L^4)$

Andrej Arbuzov

Unpolarized parton distribution funct

21st July 2023 13

13 / 26

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
000		000	0000●00000000	0000

QED NLO DGLAP evolution equations

$$\mathcal{D}_{ba}\left(x,\frac{\mu_R}{\mu_F}\right) = \delta_{ab}\delta(1-x) + \sum_{c=e,\gamma,\bar{e}} \int_{\mu_R^2}^{\mu_F^2} \frac{dt}{t} \int_x^1 \frac{dy}{y} P_{bc}(y,t) \mathcal{D}_{ca}\left(\frac{x}{y},\frac{\mu_R}{t}\right)$$

 μ_F is a factorization (energy) scale

 μ_R is a renormalization (energy) scale

 D_{ba} is a parton distribution function (PDF)

 P_{bc} is a splitting function or kernel of the DGLAP equation

N.B. In QED $\mu_R = m_e \approx 0$ is the natural choice

Motivation 000	e^+e^- colliders	QED 000	Higher order logs 00000●0000000	Outlook 0000

Initial conditions

 $\mathcal{D}_{ha}^{\text{ini}}$ is the initial approximation in iterative solutions

$$\begin{aligned} \mathcal{D}_{ee}^{\text{ini}}(x,\mu_R,m_e) &= \delta(1-x) + \frac{\bar{\alpha}(\mu_R)}{2\pi} d_{ee}^{(1)}(x,\mu_R,m_e) + \mathcal{O}(\alpha^2) \\ \mathcal{D}_{\gamma e}^{\text{ini}}(x,\mu_R,m_e) &= \frac{\bar{\alpha}(\mu_R)}{2\pi} P_{\gamma e}^{(0)}(x) + \mathcal{O}(\alpha^2) \\ d_{ee}^{(1)}(x,\mu_R,m_e) &= \left[\frac{1+x^2}{1-x} \left(\ln \frac{\mu_R^2}{m_e^2} - 2\ln(1-x) - 1 \right) \right]_+ \end{aligned}$$

They are defined from matching to perturbative calculations, see below

Motivation 000	e^+e^- colliders	QED 000	Higher order logs	Outlook 0000

QED splitting functions

The perturbative splitting functions are

$$P_{ba}(x,\bar{\alpha}(t)) = \frac{\bar{\alpha}(t)}{2\pi} P_{ba}^{(0)}(x) + \left(\frac{\bar{\alpha}(t)}{2\pi}\right)^2 P_{ba}^{(1)}(x) + \mathcal{O}(\alpha^3)$$

e.g. $P_{ee}^{(0)}(x) = \left[\frac{1+x^2}{1-x}\right]_+$

They come from direct loop calculations, see, e.g., review "Partons in QCD" by G. Altarelli. For instance, $P_{ba}^{(1)}(z)$ comes from 2-loop calculations.

The splitting functions can be obtained by reduction of the ones known in QCD to the abelian case of QED.

 $\bar{\alpha}(t)$ is the QED running coupling constant in the $\overline{\text{MS}}$ scheme

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
000	000	000	0000000●00000	0000

$\mathcal{O}(\alpha)$ matching

The expansion of the master formula for ISR gives

$$d\sigma_{e\bar{e}\to\gamma^*}^{(1)} = \frac{\alpha}{2\pi} \left\{ 2LP^{(0)} \otimes d\sigma_{e\bar{e}\to\gamma^*}^{(0)} + 2d_{ee}^{(1)} \otimes d\sigma_{e\bar{e}\to\gamma^*}^{(0)} \right\} + d\,\bar{\sigma}_{e\bar{e}\to\gamma^*}^{(1)} + \mathcal{O}\left(\alpha^2\right)$$

We know the massive $d\sigma^{(1)}$ and massless $d\bar{\sigma}^{(1)}$ $(m_e \to 0 \text{ with } \overline{\text{MS}} \text{ subtraction})$ results in $\mathcal{O}(\alpha)$. E.g.

$$\frac{d\sigma_{e\bar{e}\to\gamma^*}^{(1)}}{d\sigma_{e\bar{e}\to\gamma^*}^{(0)}} \sim \frac{\alpha}{\pi} \left[\frac{1+z^2}{1-z}\right]_+ \left(\ln\frac{s}{m_e^2} - 1\right) + \delta(1-z)(\ldots), \quad z \equiv \frac{s'}{s}$$

A scheme dependence comes from here

A factorization scale dependence is also from here

Motivation 000	e^+e^- colliders	QED 000	Higher order logs	Outlook 0000

Running coupling constant

Running of α_{QED} is known, e.g., P.Baikov, K.Chetyrkin et al., NPB '2013

$$\bar{\alpha}(t) = \frac{\alpha(\mu_R^2)}{1 + \Pi(\mu_R^2/t)}, \qquad \alpha \equiv \alpha(\mu_R^2 = m_e^2) \approx \frac{1}{137.036}$$
$$\implies \bar{\alpha}(t) = \alpha \left\{ 1 + \frac{\alpha}{2\pi} \left(-\frac{10}{9} + \frac{2}{3}L \right) + \left(\frac{\alpha}{2\pi}\right)^2 \left(-\frac{1085}{324} + 4\zeta_3 - \frac{13}{27}L + \frac{4}{9}L^2 \right) + \mathcal{O}\left(\alpha^3(\mu_R)\right) \right\}$$

The same $\overline{\text{MS}}$ scheme is used here, $L \equiv \ln(t/\mu_R^2)$

Note that here only electron loops are taken into account. Other contributions can be added.

Motivation 000	e^+e^- colliders	QED 000	Higher order logs 00000000●000	Outlook 0000

Iterative solution

The NLO "electron in electron" PDF reads

$$\begin{split} \mathcal{D}_{ee}(x,\mu_{F},m_{e}) &= \delta(1-x) + \frac{\alpha}{2\pi} LP_{ee}^{(0)}(x) + \frac{\alpha}{2\pi} d_{ee}^{(1)}(x,m_{e},m_{e}) \\ &+ \left(\frac{\alpha}{2\pi}\right)^{2} L^{2} \left(\frac{1}{2} P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \frac{1}{2} P_{ee}^{(0)}(x) + \frac{1}{2} P_{e\gamma}^{(0)} \otimes P_{\gamma e}^{(0)}(x)\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^{2} L \left(P_{e\gamma}^{(0)} \otimes d_{\gamma e}^{(1)}(x,m_{e},m_{e}) + P_{ee}^{(0)} \otimes d_{ee}^{(1)}(x,m_{e},m_{e}) - \frac{10}{9} P_{ee}^{(0)}(x) + P_{ee}^{(1)}(x)\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^{3} L^{3} \left(\frac{1}{6} P_{ee}^{(0)} \otimes P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \frac{1}{6} P_{e\gamma}^{(0)} \otimes P_{\gamma \gamma}^{(0)} \otimes P_{\gamma e}^{(0)}(x) + \ldots\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^{3} L^{2} \left(P_{ee}^{(0)} \otimes P_{ee}^{(1)}(x) + P_{ee}^{(0)} \otimes P_{ee}^{(0)} \otimes d_{ee}^{(1)}(x,m_{e},m_{e}) + \frac{1}{3} P_{ee}^{(1)}(x) - \frac{10}{9} P_{ee}^{(0)} \otimes P_{ee}^{(0)}(x) + \ldots\right) \\ &+ \mathcal{O}(\alpha^{2}L^{0}, \alpha^{3}L^{1}) \end{split}$$
The large logarithm $L \equiv \ln \frac{\mu_{F}^{2}}{\mu_{R}^{2}}$ with factorization scale $\mu_{F}^{2} \sim s \text{ or } \sim -t;$ and

renormalization scale $\mu_R = m_e$.

Required convolution integrals are listed in [A.A. hep-ph/0304063]

Motivation 000	e^+e^- colliders	QED 000	Higher order logs 000000000€00	Outlook 0000

Convolution

Convolution operation

$$f \otimes g(x) = \int_0^1 dz \int_0^1 dz' \delta(x - zz') f(z) g(z')$$
$$= \int_x^1 dz f(z) g\left(\frac{x}{z}\right)$$

Plus prescription

$$\int_{x}^{1} dy [f(y)]_{+} g(y) = \int_{0}^{1} dy f(y) \left[g(y) \Theta(y - x) - g(1) \right]$$

Complete 2-loop result: Berends et al. 1988; Blümlein et al., 2011

$$\begin{split} \sigma_{e\bar{e}}^{(2)} &= \left(\frac{\alpha}{2\pi}\right)^2 L^2 \sigma_{e\bar{e}}^{(0)} \left(P_{\gamma e}^{(0)} \otimes P_{e\gamma}^{(0)} + \frac{2}{3} P_{ee}^{(0)} + 2 P_{ee}^{(0)} \otimes P_{ee}^{(0)}\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^2 L \sigma_{e\bar{e}}^{(0)} \left(2 d_{\gamma e}^{(1)} \otimes P_{e\gamma}^{(0)} + 2 P_{ee}^{(1)} - \frac{40}{9} P_{ee}^{(0)} + 4 P_{ee}^{(0)} \otimes d_{ee}^{(1)}\right) \\ &+ \left(\frac{\alpha}{2\pi}\right)^2 L \left(2 \sigma_{e\gamma}^{(0)} P_{\gamma e}^{(0)} + \frac{2}{3} \bar{\sigma}_{e\bar{e}}^{(1)} + 2 \sigma_{e\bar{e}}^{(1)} \otimes P_{ee}^{(0)}\right) \\ &+ \mathcal{O}(\alpha^2 L^0) + \mathcal{O}(m_e^2/s) \end{split}$$

Massification procedure

Two-loop (virtual) corrections the Bhabha scattering with $m_e \equiv 0$ [Z.Bern, L.J.Dixon, A.Ghinculov, PRD 2001]

Two-loop (virtual+soft) corrections the Bhabha scattering with $m_e \neq 0$ [A.Penin, PRL 2005; NPB 2006] but for $s, |t|, |u| \gg m_e^2$

Statement: all terms enhanced by large logs $L = \ln(Q^2/m_e^2)$ can be restored

The result of A.Penin was reproduced by adding universal terms to the massless result [T.Becher, K.Melnikov, JHEP 2007]

McMule – NNLO QED Corrections for Low-Energy Experiments [P.Banerjee, T.Engel, A.Signer, Y.Ulrich, SciPost Phys. 2020]

Motivation 000	e^+e^- colliders	QED 000	Higher order logs 000000000000	$_{\rm \bullet 000}^{\rm Outlook}$
Applications	3			

Current work:

- ISR in electron-positron annihilation $e^+e^- \rightarrow \gamma^*$, Z^* "Higher-order NLO initial state radiative corrections to $e^+e^$ annihilation revisited"
- $\mathcal{O}(\alpha^3 L^2)$ corrections to muon decay spectrum: relevant for future experiments on Dirac vs. Majorana neutrino discrimination

Near future plans:

- Implementation into ZFITTER, production of benchmarks, tuned comparisons with KKMC which uses YFS exponentiation for ISR
- Application to different e^+e^- annihilation channels and asymmetries within the SANC project
- $\mathcal{O}(\alpha^3 L^2)$ corrections to muon-electron scattering for MUonE experiment

QED PDFs vs. QCD ones

Common properties:

- QED splitting functions = abelian part of QCD ones
- The same structure of DGLAP evolution equations
- The same Drell-Yan-like master formula with factorization
- Factorization scale and scheme dependence

Peculiar properties:

- QED PDFs are calculable
- QED PDFs are less inclusive
- QED renormalization scale $\mu_R = m_e$ is preferable
- QED PDFs can (do) lead to huge corrections
- QED cross-checks QCD

Motivation	e^+e^- colliders	QED	Higher order logs	Outlook
000		000	000000000000	00€0
Oretheale				

Outlook

- QED NLO PDFs are derived in a consistent way
- Having high theoretical precision for the normalization processes $e^+e^- \rightarrow e^+e^-$, $e^+e^- \rightarrow \mu^+\mu^-$, and $e^+e^- \rightarrow 2\gamma$ is crucial for future e^+e^- colliders, especially for the Tera-Z mode
- There are several two-loop QED results, but leading higher order corrections are also numerically important
- New Monte Carlo codes are required
- Semi-analytic codes are relevant for cross-checks and benchmarks
- Comparisons with recent results of Blümlein et al. show a serious disagreement (even in the leading logs) due to four separate issues
- A bug in QCD NLO PDFs is found (?)
- Our results are relevant for several studies in future experiments

The electron is as inexhaustible as the atom [V. Lenin '1908]

Andrej Arbuzov

Unpolarized parton distribution funct