

Active Learning application in a dark matter search with ATLAS PanDA and iDDS

Rui Zhang, on behalf of the ATLAS Collaboration International Conference on New Frontiers in Physics (ICNFP 2023) University of Wisconsin-Madison, Wisconsin July 10–23, 2023

R. Zhang

Beyond Standard Model physics parameters

• Hidden Abelian Higgs Model introduces a new Scalar S, new vector boson Z_d

- Five different parameters involved in the model
 - m_S new scalar mass
 - m_{Z_d} new vector boson mass
 - Γ_{Z_d} decay width of the new vector boson
 - ϵ mixing between Standard Model Z and Z_d
 - κ mixing between Higgs Boson H and S
- ATLAS publication <u>JHEP 03 (2022) 041</u>

ICNFP2023

(a) Hypercharge portal

 Z_d

(b) Higgs portal

Search in high-dimensional parameter space

- Process for calculation of limits in phase space conceptional simple, e.g., do a "grid search"
 - Select boundaries in $m_{Z_d}, m_{H_d}, \Gamma_{Z_d}, \epsilon, \kappa$
 - Generate grid of signal samples
 - Calculate cross section limits for each sample
 - Bonus: with theory predictions one can infer contours between excluded and not excluded regions of parameter space

- Problem:
 - Generating Monte Carlo samples is computationally expensive

Monte Carlo Simulation

- Monte Carlo (MC) Event simulation is very computationally intensive
 - ~15h calculation time for 100 simulated events on a single CPU core
 - Might need around 10^5 events or more per signal samples
 - Using a grid of 10 values in two dimensions would require 10^7 events, about ~2k CPU months
 - Estimate is for fast calorimeter simulation, full calorimeter simulation requires even more computational resources

CPU resources available to the <u>ATLAS</u> <u>experiment</u> in late January 2023

Active Learning

- An iterative process to collect new labelled data for optimisation tasks
- We developed a system to work around the computational constraints by using an Active Learning approach that includes
 - **Surrogate model** that approximates the function mapping physics parameters onto exclusion limits

$$-m_{Z_d}, m_{H_d}, \Gamma_{Z_d}, \epsilon, \kappa \to \sigma(m_{Z_d}, m_{H_d}, \Gamma_{Z_d}, \epsilon, \kappa)$$

 An acquisition function that determines which points in the physics parameter space to explore based on the surrogate model

Surrogate Model

- Surrogate Model: Gaussian Process
 - Non-parametric model, yielding probability distribution over possible functions that fit a set of points.
- Assumes $f(\vec{x})$ is a random variable for each input surrogate model (red) to describe truth (blue) within uncertainty \vec{x} and $p(f(x_1), f(x_2), ...)$ is a multivariate gaussian:

0

-1

-2

-3

-4

-5

-6

-7

1000

.og (local p-value)

- $p(f(\vec{x})) = N(f(\vec{x}) | \vec{\mu}, \mathbf{K})$
- mean vector $\overrightarrow{\mu}$
- covariance matrix $\mathbf{K}_{ij} = k(x_i, x_j)$
- kernel $k(x_i, x_i)$, many options, common choice:

Radial Basis Function kernel $k(x_i, x_j) = \exp \left[\frac{1}{2} \exp \left(\frac{1}{2} \exp \left(\frac{1}{$

1500

4000

True (unknown)

GP 95% conf-

dence interval Observations

3500

 $\mu_{GP}(x)$

2500

m [GeV]

3000

2000

Acquisition Function

One example: Probability of improvement (PI)

- Assume we want to find the minimum of an underlying true function, via optimising surrogate model
- $f(x^*)$ is current minimum, then choose next value to sample for surrogate model, such that $PI(x) = Prob(f(x) - f(x^*) > 0)$ is maximal
- PI(x) calculable as f(x) is a gaussian distribution with mean $\mu(x),$ and standard deviation $\sigma(x)$

$$PI(x) = \Phi\left(\frac{f(x^*) - \mu(x)}{\sigma(x)}\right), \Phi \text{ is Gaussian}$$
 cumulative distribution function

- Other examples include upper confidence bound, expected improvement
- See "<u>Active Learning for Excursion Set</u> <u>Estimation</u>" by Kyle Cranmer et al. for an entropy-based acquisition function

Iterative feedback and learning

Results - 1D

 First we have run some 1D results to verify if we can reproduce the results in the publication

m_{Z_d}	HepData		This study		Ratio of HepData to this study	
[GeV]	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.
15	0.34	0.48	0.32	0.48	1.04	1.00
20	0.74	0.53	0.73	0.51	1.03	1.04
25	0.37	0.54	0.37	0.55	0.99	0.99
30	0.56	0.51	0.57	0.52	0.99	0.98
40	0.39	0.25	0.39	0.26	1.00	0.97
50	0.30	0.21	0.30	0.20	1.01	1.03

- Agreement is within <4%
- Major differences:
 - Limits obtained with pseudo-data (publication) vs asymptotic Formulae (this study)
 - Different ATLAS software versions (signal MC are simulated in different versions)
 - Different NP pruning scheme

Results - 2D

- Parameter phase space bounded by
 - $m_{Z_d} = [15, 55], \epsilon = [0.0001, 0.1]$
- Goal is to looking for max(Obs-Exp) to find excess

Active learning

Observed 95% CL upper limit on $\sigma(gg \rightarrow H \rightarrow ZZ_d \rightarrow 4I)$ [fb]

0.6

0.7

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

1D

2D iter 1

0.8

0.5

0.3

0.4

0.2

a gol

Summary

- Demonstrated active learning driven re-analysis for published dark sector analysis
 - Extended dark Z search channel from 1D to 2D parameter space in $m_{Z_{\rm d}}$ and ϵ
 - PubNote <u>ATL-PHYS-PUB-2023-010</u>
- Establishing a 2nd demonstrator based on <u>heavy Higgs Boson search</u>
 - 3D parameter space
 - Theory predictions to prioritise exclusion contours
- Many other applications and possibilities for this tool and workflow
- Another application of active learning using a different tool:
 - Active Learning reinterpretation of an ATLAS Dark Matter search constraining a model of a dark Higgs boson decaying to two b-quarks <u>ATL-PHYS-PUB-2022-045</u>

Thank you for your attention!