

Search for new physics using unsupervised machine learning for anomaly detection with the ATLAS detector at the LHC

Chi Lung Cheng (University of Wisconsin-Madison) On behalf of the ATLAS collaboration, ICNFP 2023

Introduction

- Traditional studies optimize signal regions using **BSM Monte Carlo**
- Anomaly detection (AD) is used as a new strategy that defines outlier events to look for new phenomena in two body invariant masses

Advantage of using Anomaly Detection

• Not relying on specific signal hypothesis – Model independent

Analysis strategy

- One lepton trigger and pre-selection: $p_T^l > 60$ GeV, $p_T^{jet} > 30$ GeV
- Reconstruct Rapidity Mass Matrix (RMM) for each event
- Train Autoencoder (AE) using randomly selected 1% Run2 data
- Define Anomaly Regions (AR) using reconstruction loss from AE
- Likelihood fits on invariant mass spectrum and look for bumps

- Unsupervised training on data no MC modelling required
- Full exploitation of event topologies on the standard reconstructed objects (jet, b-jet, e, μ , γ , met)

Rapidity Mass Matrix (RMM)

- 2D matrix comprised of single- and double-particle characteristics of all reconstructed objects
- Different characteristics for different processes: e.g. Multi-jets QCD (left) VS SM Higgs production with all Higgs decays allowed (right)

Reference: 1810.06669

Background modelling

- Smoothing falling mass spectra
- Use SM MC and loose-lepton control regions to define bkg function:

 $f(x) = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x + p_5 \ln^2 x}$

• Alternative bkg function for systematics: $f(x)_{\text{alt}} = p_1(1-x)^{p_2} x^{p_3+p_4 \ln x + p_5/\sqrt{x}}$

Results in 10 pb Anomaly Region

- Good agreement from mass spectrum fit
 - Normality tests on pulls passed for all masses
 - Bkg shape uncertainty shown in yellow
- Bin-by-bin significances in lower panel

- Calculate improvement in discovery significance
- $-Z = \sqrt{2 \cdot \left[(S+B) \cdot \ln(1+S/B) S \right]}$
- Sensitivity improvement quantified by ΔZ $-\Delta Z = 300 - 400\%$ for most BSM models

- 95% CL upper limits for Gaussian-shaped signals with two width hypotheses:
 - $-\sigma = 0$ and $\sigma/m = 15\%$
- Largest deviation is consistent with a statistical fluctuation

- Largest deviation is $m_{i\mu}$ at around 4.8 TeV
- Directly translates into competitive limits

- Local 2.9
$$\sigma$$
 at $m_{j\mu} = 4.8$ TeV

Summary

- Successful application of **unsupervised machine learning** for anomaly detection using event level information
- Model agnostic selection based on data instead of BSM Monte Carlo
- 9 two-body invariant masses for jet+X (b-jet+X) analyzed in 3 outlier regions, no significant deviation observed
- In 10 pb Anomaly Region, the largest deviation (2.9 σ) for j+ μ near 4.8 TeV is consistent with statistical fluctuation
- Analysis method shows improvement of sensitivity up to around 300% in model-independent limits of Gaussian-shaped signals

Reference: EXOT-2022-07