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The Standard Model of Particle Physics

S.King, talk at Bethe Forum on 
Modular Flavor Symmetries

Left-handed 

Right-handed 

Scalar sector

Gauge boson 
sector



3

The Flavor Problem

Mass hierarchies
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The Flavor Problem

Mass hierarchies Fermion mixing

almost a diagonal matrix

all mixing are large but 
the 13 element

very small neutrino 
masses
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Suggested solutions

mlight∼
mD
2

M M
R

No clue on mixing !

* Smallness of 
  neutrino masses:

  See-saw



6

Suggested solutions

L∼Ψ L H ΨR ( θΛ )
n

→e(−qL+q H+qR+ n∗q θ)

mlight∼
mD
2

M M
R

* Smallness of 
  neutrino masses:

  See-saw

* Hierarchical    
   Pattern

   Froggatt-Nielsen   
   mechanism

No clue on mixing !
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Suggested solutions

* Hierarchical    
   Pattern

   Froggatt-Nielsen   
   mechanism

mlight∼
mD
2

M M
R

* Smallness of 
  neutrino masses:

  See-saw

L∼Ψ L H ΨR ( θΛ )
n

No clue on mixing !

Too many O(1) coefficients

Works better for small mixing
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Suggested solutions

* Hierarchical    
   Pattern

   Froggatt-Nielsen   
   mechanism

mlight∼
mD
2

M M
R

* Smallness of 
  neutrino masses:

  See-saw

* mixing angles

elegant explanation:  
non-Abelian
discrete flavour symmetries 

Complicated scalar 
sector

L∼Ψ L H ΨR ( θΛ )
n

Too many O(1) coefficients

Works better for small mixing

No clue on mixing !
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Modular Symmetry

We start from 

Γ(N )={(a b
c d )∈SL(2 , Z ) ,(a b

c d)=(1 0
0 1)(Mod N )}

Feruglio, 1706.08749

the group of 2x2 matrices with integer entries 
modulo N and determinant equals to one modulo N
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Modular Symmetry

We start from 

Γ(N )={(a b
c d )∈SL(2 , Z ) ,(a b

c d)=(1 0
0 1)(Mod N )}

G(1)=SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and 
determinant equals to one, called homogeneous modular group G

Feruglio, 1706.08749

the group of 2x2 matrices with integer entries 
modulo N and determinant equals to one modulo N
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Modular Symmetry

We start from 

Γ(N )={(a b
c d )∈SL(2 , Z ) ,(a b

c d)=(1 0
0 1)(Mod N )}

G(1)=SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and 
determinant equals to one, called homogeneous modular group G

G(N), N>=2  are infinite normal subgroups of Γ

Feruglio, 1706.08749

the group of 2x2 matrices with integer entries 
modulo N and determinant equals to one modulo N
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Modular Symmetry

We start from 

Γ(N )={(a b
c d )∈SL(2 , Z ) ,(a b

c d)=(1 0
0 1)(Mod N )}

G(1)=SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and 
determinant equals to one, called homogeneous modular group G

G(N), N>=2  are infinite normal subgroups of Γ

Feruglio, 1706.08749

the group of 2x2 matrices with integer entries 
modulo N and determinant equals to one modulo N

the group Γ(N) acts on the complex variable τ (Im τ >0)

γ τ=
a τ+b
c τ+d
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Modular Symmetry

inhomogeneous modular group (or simply Modular Group)

Important observation for N=1:  a transformation characterized by parameters 
{a, b, c, d} is identical to the one defined by {-a, -b, -c, -d}

G(1) is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = G
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Modular Symmetry

inhomogeneous modular group (or simply Modular Group)

Important observation for N=1:  a transformation characterized by parameters 
{a, b, c, d} is identical to the one defined by {-a, -b, -c, -d}

G(1) is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = G

In addition:

Γ(2)=Γ(2) /{1 ,−1} Γ(N )=Γ(N ) N>2

since 1 and -1 can be distinguished

since 1 and -1 cannot be 
distinguished
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Modular Symmetry

inhomogeneous modular group (or simply Modular Group)

Important observation for N=1:  a transformation characterized by parameters 
{a, b, c, d} is identical to the one defined by {-a, -b, -c, -d}

G(1) is isomorphic to PSL(2, Z) = SL(2, Z)/{±1} = G

In addition:

Γ(2)=Γ(2) /{1 ,−1} Γ(N )=Γ(N ) N>2

since 1 and -1 can be distinguished

since 1 and -1 cannot be 
distinguished

Finite Modular Group: ΓN=
Γ

Γ(N )
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Modular Symmetry

Generators of G
N
 : elements S and T satisfying

S=( 0 1
−1 0) , T=(1 1

0 −1)
corresponding to:

τ→
S
−
1
τ

τ→
T
τ+1

S2=1, (S T )3=1 , T N=1
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Modular Symmetry

Generators of G
N
 : elements S and T satisfying

S=( 0 1
−1 0) , T=(1 1

0 −1)
corresponding to:

τ→
S
−
1
τ

τ→
T
τ+1

S2=1, (S T )3=1 , T N=1

modular invariance
completely broken
everywhere but at three
fixed points

τ=i τ→
S
−
1
τ Z 4

S

τ=ei2 /3π
τ→

ST
−
1

τ+1
Z 2

ST x Z2
S 2

τ=i∞ τ→
T
τ+1 ZT x Z2

S2

residual 
symmetry
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Modular Symmetry

τ=ei2 /3π

τ=i∞

τ=i

Fundamental 
domain

Re(tau)1-1 0

Im(tau)
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Modular Symmetry

τ=ei2 /3π

τ=i∞

τ=i

Fundamental 
domain

Re(tau)1-1 0

Im(tau)

relevant for model building:

for N ≤ 5, the finite modular groups G
N
  are isomorphic to non-Abelian discrete groups 

Then the question is: why Modular Symmetry ? 

G
2
 ≃ S

3
       G

3
≃ A

4
       G

4
 ≃ S

4            
G

5
≃ A

5
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Modular Forms

Modular Forms:

holomorphic functions of the complex variable τ with well-defined 
transformation properties under the group G(N)

f (γ τ )=(c τ+d )k f ( τ) , γ=(a b
c d)∈Γ(N ) k = weigth,  N  = level 
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Modular Forms

Modular Forms:

holomorphic functions of the complex variable τ with well-defined 
transformation properties under the group G(N)

k = weigth,  N  = level 

            K < 0: 
no modular forms 

            K = 0: 
constant functions

            K > 0: 
          linear space of finite   
                           dimension

R. C. Gunning, Lectures on Modular 
Forms, Princeton, New Jersey USA, 
Princeton University Press 1962

f (γ τ )=(c τ+d )k f ( τ) , γ=(a b
c d)∈Γ(N )
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Model Building

Key points:

1. Modular forms of weight 2k and level N ≥ 2 are invariant, up to the  
    factor (cτ + d)k under G(N) but they transform under G

N
  ! 

f i(γ τ )=(c τ+d )kρ(γ)ij f j (τ)

unitary representation of G
Nrepresentative element of G

N
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Model Building

Key points:

1. Modular forms of weight 2k and level N ≥ 2 are invariant, up to the  
    factor (cτ + d)k under G(N) but they transform under G

N
  ! 

unitary representation of G
Nrepresentative element of G

N

2. in addition, one assumes that the fields of the theory c
i  
transforms non-   

    trivially under  G
N
  

χ (x )i→(c τ+d )− k iρ(γ)ij χ (x) j

not modular forms !
No restrictions on ki

f i(γ τ )=(c τ+d )kρ(γ)ij f j (τ)
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Model Building

Building blocks:

1. Modular forms and fields: Leff ∈ Y (τ)×χ
(1 )... χ(n)

Yukawas are modular forms
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Model Building

Building blocks:

1. Modular forms and fields:

2. Invariance under modular transformation requires:

k=Σi k i

ρf⊗ρχ1
⊗...⊗ρχn

⊃ I

Leff ∈ Y (τ)×χ
(1 )... χ(n)

Yukawas are modular forms

only few terms 
allowed in the 
potential
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Model Building

Building blocks:

1. Modular forms and fields:

2. Invariance under modular transformation requires:

k=Σi k i

ρf⊗ρχ1
⊗...⊗ρχn

⊃ I

Can someone give me the Modular Forms?

To start playing the game:

Leff ∈ Y (τ)×χ
(1 )... χ(n)

Yukawas are modular forms

only few terms 
allowed in the 
potential
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Let us find the functions f(t) !

The group S3 contains 1 + 1’ + 2

two independent modular forms can fit into a doublet of S3

Simplest Case: G
2 
~ S

3



28

Let us find the functions f(t) !

Dedekind eta functions 

The group S3 contains 1 + 1’ + 2

two independent modular forms can fit into a doublet of S3

h24 is a modular form of weight 12

S: T:

Simplest Case: G
2 
~ S

3
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Constructing the Modular Forms

the system is closed under modular 
transformation

η(2 τ)
η(τ /2)

η((τ+1)2 )

T

T

S

S

Simplest Case: G
2 
~ S

3
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Constructing the Modular Forms

the system is closed under modular 
transformation

η(2 τ)
η(τ /2)

η((τ+1)2 )

T

T

S

S

doublet of S
3
: Y

q=e 2 π i Re(τ) e -2  π Im(τ)

Simplest Case: G
2 
~ S

3
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Guiding principles for model buildings:

# small number of operators (few free parameters) → predictability

# no new matter fields →  minimality

# no new scalar fields beside Higgs(es) → symmetry breaking dictated by  
                                                              the vev of t

# charged lepton hierarchy by symmetry arguments →  “appealing”

# fit to all low energy neutrino data →  useful

DM & Matteo Parriciatu, 2306.09028 [hep-ph] 

|Y 2(τ) /Y 1( τ)|≪1 for τ in D

Simplest Case: G
2 
~ S

3
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A case study: G
2 
~ S

3

Charged leptons 

Texture zeros – minimal # of free parameters

M l=(
X X 0
X X 0
0 0 X)

(
l1
l2)→(c τ+d )−kl

ρ(γ)(
l1
l2)
2 of S3

unspecified 
weight

l3∼1
' , k lLH 

fields

RH 
fields E1

c∼(1,4−k l ) E2
c
∼(1' ,2−k l ) E3

c
∼(1' ,−k l )
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A case study: G
2 
~ S

3

Charged leptons 

|Y 2(τ) /Y 1( τ)|=ε
modular forms of weight 4
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A case study: G
2 
~ S

3

Charged leptons 

Mass hierarchy scaling naturally reproduced !
(no fit so far...)

for |Y1| ~ 7/100

modular forms of weigth 4 |Y 2(τ) /Y 1( τ)|=ε
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A case study: G
2 
~ S

3

Ready for Neutrinos: key ingredient is to fix k
l

several possible choices. The best one gives (k
l
=2):

Independent parameters: Re(τ), Im(τ), β/α, γ/α, g’/g, g’’/g, gp/g
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A case study: G
2 
~ S

3

Mass matrices against the experimental dataNumerical fit

data fit results

χ2~ O(0.1)
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A case study: G
2 
~ S

3

Mass matrices against the experimental dataNumerical fit

data fit results

χ2~ O(0.1)

predictions

!!!
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A case study: G
2 
~ S

3

correlations

• the CP-violating phase is in 
agreement (within the 2σ range) with 
the global analysis of oscillation data
 

• values of the sum of neutrino masses 
is around 0.090 eV, which is 
compatible with the present upper 
bound of 0.115 eV (95 % C.L.)

• the Majorana effective mass lies 
around ∼20 meV, not too far from the 
recent KamLAND-Zen upper bound |
mββ | < (36 − 156) meV

• Majorana phases α1, α2 live in 
narrow regions around ±1.13π, ±0.95π
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Conclusions

Modular symmetries offer an alternative way for model building

Yukawa couplins dictated 
by modular forms

symmetry breaking by 
the vev of tau only

unified description of 
quarks and leptons

A lot to do:

mass hierarchy

more than one 
modulus

more pheno: 
leptogenesis, 
LFV...
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Backup slides
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Model Building

Constructing the Modular Forms

Crucial observation:

if

then

this term prevents of 
having a modular form 
of weight 2 k = 2

The inhomogeneous term can be removed if 
we combine several f

i
(τ) with weights k

i

d
d τ

Σi log [g i(τ )] → (c τ+d )2
d

d τ
Σi log [gi( τ)]+ (Σi k i ) c (c τ+d)

Σi k i=0with

g( τ) → eiα (c τ+d )k g( τ)

d
d τ
log [ g( τ)] → (c τ+d)2

d
d τ
log [ g( τ)]+k c (c τ+d )
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A case study: G
2 
~ S

3

Constructing the Modular Forms

Equations to be satisfied:

Y 1(α ,β , γ)∼Y (1,1 ,−2) Y 2(α ,β , γ)∼Y (1 ,−1,0)

representation of generators

doublet of S3: Y
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Kahler potential

Under G:

The invariance of the action requires the 
invariance of the superpotential w(Φ) and 
the invariance of the Kahler potential up 
to a Kahler transformation:

Kahler potential:

modular invariant kinetic terms
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Some definitions

a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup 

which is invariant under conjugation by members of the group of which it is a part: 

a subgroup N of the group G  is normal in G  if and only if (g n g− 1) ∈ N for all g ∈ G  and n ∈ N  

G(N), N>=2  are infinite normal subgroups of Γ, called principal congruence subgroups

the group Γ(N) acts on the complex variable τ (Im τ >0)

γ τ=
a τ+b
c τ+d

And it can be shown that the upper half-plane is mapped to itself under this action. 
The complex variable is henceforth restricted to have positive imaginary part
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Some definitions

Modular Functions and Modular Forms   
                     J. S. Milne

Fundamental domain of t on SL(2,Z): connected open subset such that no two 
points of D are equivalent under SL(2,Z)
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A case study: G
2 
~ S

3

Constructing the Modular Forms

Under T:

Under S:

Y (α ,β , γ) → Y (γ ,β ,α)

Y (α ,β , γ) → τ2 Y (γ ,α ,β)

representation of generators
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A case study: G
2 
~ S

3

Dedekind eta functions 

Under T:

η(2 τ) → e iπ/6η(2 τ)

η(τ /2) → η((τ+1) /2)

η(( τ+1)/2) → ei π/12η( τ /2)

Under S:

η(2 τ) → √−i τ /2 η(τ /2)

η(τ /2) → √−2 i τ η(2 τ )

η((τ+1)2 ) → e−iπ /12√−i τ (√3−i )η( (τ+1)2 )
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Mod

Id[a_, b_] := {{Mod[a, b], 0}, {0, Mod[a, b]}}

Id[-1, 2] (1 0
0 1)

Id[-1, 3] (2 0
0 2)
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Origin of modular symmetry

Two periods in complex functions f : C → C

periods ∈ C such that ω2/ω1 ∉ ℜ

a lattice Λ can be generated in 
the complex plane, spanned
by the two directions ω1, ω2

elliptic function:

elliptic functions are translation-invariant in this lattice: f (z + λ) = f (z) for λ ∈ Λ

Thus, an elliptic function is single-valued on the quotient C/Λ, which is 
topologically known as a torus (T2). 
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Origin of modular symmetry

Rescaling of the periods:

ω1 = 1 and ω2/ω1 = τ,  where τ is called the modulus

ω1

ω2/ω1

the torus is represented by a parallelogram with vertices z = 0, z = 1, z = τ and z 
= τ + 1 where the opposite sides are pairwise identified

courtesy by Matteo Parriciatu, 
Master Thesis

The lattice Λ can be equivalently 
described by a different basis (ω′

1
, 

ω′
2
) related to the old by a linear 

map with integer parameters:
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Model Building

Long (not updated) list from S.T. Petcov, Bethe Forum, University of Bonn, 04/05/2022



52

Model Building

Highest level modular form:
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