XII International Conference on New Frontiers in Physics

10-23 July 2023, Kolymbari

A new perspective on the flavor problem

Davide Meloni Dipartimento di Matematica e Fisica, Roma Tre

The Standard Model of Particle Physics

S.King, talk at Bethe Forum on Modular Flavor Symmetries

The Flavor Problem

Mass hierarchies

$$
m_d \ll m_s \ll m_b
$$
, $\frac{m_d}{m_s} = 5.02 \times 10^{-2}$,

$$
m_u \ll m_c \ll m_t, \ \frac{m_u}{m_c} = 1.7 \times 10^{-3},
$$

$$
\frac{m_s}{m_b} = 2.22 \times 10^{-2}, \ m_b = 4.18 \text{ GeV};
$$

 \rightarrow

$$
\frac{m_c}{m_t} = 7.3 \times 10^{-3}, \ m_t = 172.9 \text{ GeV};
$$

The Flavor Problem

$$
m_d \ll m_s \ll m_b
$$
, $\frac{m_d}{m_s} = 5.02 \times 10^{-2}$,

$$
m_u \ll m_c \ll m_t
$$
, $\frac{m_u}{m_c} = 1.7 \times 10^{-3}$,

$$
\frac{m_s}{m_b} = 2.22 \times 10^{-2}, \ m_b = 4.18 \text{ GeV};
$$

$$
\frac{m_c}{m_t} = 7.3 \times 10^{-3}, \ m_t = 172.9 \text{ GeV};
$$

almost a diagonal matrix

all mixing are large but the 13 element

* Smallness of neutrino masses:

See-saw

$$
M = \begin{bmatrix} m_M^L & m_D \\ m_D & m_M^R \end{bmatrix}
$$

$$
m_{light} \sim \frac{m_D^2}{M_M^R}
$$

No clue on mixing !

* Smallness of neutrino masses:

See-saw

* Hierarchical Pattern

> Froggatt-Nielsen mechanism

$$
L \sim \overline{\Psi_L} H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n \rightarrow e^{(-q_L + q_H + q_R + n \ast q_\theta)}
$$

$$
M = \begin{bmatrix} m_M^L & m_D \\ m_D & m_M^R \end{bmatrix}
$$

$$
m_{light} \sim \frac{m_D^2}{M_M^R}
$$

No clue on mixing !

* Smallness of neutrino masses:

See-saw

 $\mathcal{M} = \begin{bmatrix} m_M^L & m_D \\ m_D & m_M^R \end{bmatrix}$ m_D^2 *mlight*∼ \bm{M}_M^R

No clue on mixing !

* Hierarchical Pattern

> Froggatt-Nielsen mechanism

$$
L \sim \overline{\Psi_L} H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n
$$

Too many O(1) coefficients

Works better for small mixing

* Smallness of neutrino masses:

See-saw

$$
M = \begin{bmatrix} m_M^L & m_D \\ m_D & m_M^R \end{bmatrix}
$$

$$
m_{light} \sim \frac{m_D^2}{M_M^R}
$$

No clue on mixing !

* Hierarchical Pattern

> Froggatt-Nielsen mechanism

$$
L \sim \overline{\Psi_L} H \Psi_R \left(\frac{\theta}{\Lambda}\right)^n
$$

Too many O(1) coefficients

Works better for small mixing

discrete flavour symmetries

* mixing angles

elegant explanation:

non-Abelian

Complicated scalar sector

8

Feruglio, 1706.08749

$$
\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \right\}
$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

Feruglio, 1706.08749

$$
\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \right\}
$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)$ =SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called **homogeneous modular group** Γ

Feruglio, 1706.08749

$$
\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \right\}
$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)$ =SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called **homogeneous modular group** Γ

G**(N), N>=2** are infinite normal subgroups of Γ

Feruglio, 1706.08749

$$
\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, Z), \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (Mod N) \right\}
$$

the group of 2x2 matrices with integer entries modulo N and determinant equals to one modulo N

 $\Gamma(1)$ =SL(2, Z) = special linear group = the group of 2x2 matrices with integer entries and determinant equals to one, called **homogeneous modular group** Γ

G**(N), N>=2** are infinite normal subgroups of Γ

the group $\Gamma(N)$ acts on the complex variable τ (Im τ >0)

$$
\gamma \tau = \frac{a \tau + b}{c \tau + d}
$$

Important observation for $N=1$: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a, -b, -c, -d\}$

 $\Gamma(1)$ is isomorphic to **PSL(2, Z) = SL(2, Z)/{** ± 1 **} =** Γ

inhomogeneous modular group (or simply Modular Group)

Important observation for $N=1$: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a, -b, -c, -d\}$

 $\Gamma(1)$ is isomorphic to **PSL(2, Z) = SL(2, Z)/{** ± 1 **} =** Γ

inhomogeneous modular group (or simply Modular Group)

In addition:

$$
\overline{\Gamma}(2) = \Gamma(2)/\{1, -1\}
$$
\n
$$
\Gamma(N) = \Gamma(N) \qquad N > 2
$$
\nsince 1 and -1 cannot be
\ndistinguished.

distinguished

$$
\Gamma(N) = \Gamma(N) \qquad N > 2
$$

since 1 and -1 **can** be distinguished

Important observation for $N=1$: a transformation characterized by parameters $\{a, b, c, d\}$ is identical to the one defined by $\{-a, -b, -c, -d\}$

 $\Gamma(1)$ is isomorphic to **PSL(2, Z) = SL(2, Z)/{** ± 1 **} =** Γ

inhomogeneous modular group (or simply Modular Group)

In addition:

$$
\Gamma(2) = \Gamma(2)/\{1, -1\}
$$
\n
$$
\Gamma(N) = \Gamma(N) \qquad N > 2
$$
\nsince 1 and -1 cannot be distinguished

\nsince 1 and -1 can be digit.

$$
\Gamma(N) = \Gamma(N) \qquad N > 2
$$

since 1 and -1 **can** be distinguished

Finite **Modular Group:**
$$
\Gamma_N
$$

$$
\Gamma_N = \frac{\overline{\Gamma}}{\overline{\Gamma}(N)}
$$

Generators of $\Gamma_{\text{\tiny N}}$: elements S and T satisfying

$$
S^{2} = 1, (ST)^{3} = 1, T^{N} = 1
$$

$$
S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, T = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}
$$

corresponding to:

$$
\tau \stackrel{s}{\rightarrow} -\frac{1}{\tau} \qquad \qquad \tau \stackrel{\tau}{\rightarrow} \tau + 1
$$

Generators of $\Gamma_{\text{\tiny N}}$: elements S and T satisfying

$$
S^{2} = 1, (ST)^{3} = 1, T^{N} = 1
$$

$$
S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, T = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}
$$

corresponding to:

modular invariance completely broken everywhere but at **three** fixed points

relevant for model building:

for N \leq 5, the finite modular groups $\Gamma_{_{\rm N}}$ are isomorphic to non-Abelian discrete groups

$$
\Gamma_2 \simeq S_3 \qquad \Gamma_3 \simeq A_4 \qquad \Gamma_4 \simeq S_4 \qquad \Gamma_5 \simeq A_5
$$

Then the question is: why Modular Symmetry ?

Modular Forms:

holomorphic functions of the complex variable τ with well-defined transformation properties under the group $\Gamma(N)$

$$
f(\gamma \tau) = (c \tau + d)^k f(\tau), \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N)
$$
 $k = \text{weight}, N = \text{level}$

Modular Forms:

holomorphic functions of the complex variable τ with well-defined transformation properties under the group $\Gamma(N)$

$$
f(\gamma \tau) = (c \tau + d)^k f(\tau), \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N)
$$

 $k = weight$, $N = level$

R. C. Gunning, Lectures on Modular Forms, Princeton, New Jersey USA, Princeton University Press 1962

Key points:

1. Modular forms of weight 2k and level $N \ge 2$ are invariant, up to the factor (c τ + d)^k under $\Gamma(\textbf{N})$ but they transform under $\Gamma_{\text{\tiny N}}$!

 $f_i(y \tau) = (c \tau + d)^k \rho(y)_{ij} f_j(\tau)$

representative element of $\Gamma_{\substack{N}}$

unitary representation of $\Gamma_{\substack{N}}$

Key points:

1. Modular forms of weight 2k and level $N \geq 2$ are invariant, up to the factor (c τ + d)^k under $\Gamma(\textbf{N})$ but they transform under $\Gamma_{\text{\tiny N}}$! unitary representation of $\Gamma_{\substack{N}}$ $f_i(y \tau) = (c \tau + d)^k \rho(y)_{ij} f_j(\tau)$

representative element of $\Gamma_{\substack{N}}$

2. in addition, one assumes that the fields of the theory $\boldsymbol{\chi}_{_\text{t}}$ transforms nontrivially under $\Gamma_{_{\rm N}}$

$$
\chi(x)_i \rightarrow (c \tau + d)^{-k_i} \rho(\gamma)_{ij} \chi(x)_j
$$

not modular forms ! No restrictions on ki

Building blocks:

1. Modular forms and fields:

 $\overset{(1)}{\cdots}$ $\overset{(n)}{\chi}$

Yukawas are modular forms

Building blocks:

1. Modular forms and fields:

 $L_{\it eff}$ \in $\;Y\,(\,\tau)\hskip-1pt\times\chi^{(1)}\hskip-.7pt\ldots\,\chi^{(n)}$

Yukawas are modular forms

2. Invariance under modular transformation requires:

$$
k = \sum_{i} k_{i}
$$

$$
\rho_{f} \otimes \rho_{\chi_{1}} \otimes \dots \otimes \rho_{\chi_{n}} \supset I
$$

only few terms allowed in the potential

Building blocks:

1. Modular forms and fields:

 $L_{\it eff}$ \in $\;Y\,(\,\tau)\hskip-1pt\times\chi^{(1)}\hskip-.7pt\ldots\,\chi^{(n)}$

Yukawas are modular forms

2. Invariance under modular transformation requires:

$$
k = \sum_{i} k_{i}
$$

$$
\rho_{f} \otimes \rho_{\chi_{1}} \otimes \dots \otimes \rho_{\chi_{n}} \supset I
$$

only few terms allowed in the potential

To start playing the game:

Can someone give me the Modular Forms?

Let us find the functions $f(\tau)$!

The group S_3 contains $1+1'+2$

two independent modular forms can fit into a doublet of S_3

Let us find the functions $f(\tau)$!

The group S_3 contains $1+1'+2$

two independent modular forms can fit into a doublet of S_3

Dedekind eta functions
$$
\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)
$$
 $q \equiv e^{i2\pi\tau}$

S:
$$
\eta(-1/\tau) = \sqrt{-i\tau} \eta(\tau)
$$
, T: $\eta(\tau + 1) = e^{i\pi/12} \eta(\tau)$

 η^{24} is a modular form of weight 12

Simplest Case: I 2 \sim S 3

Constructing the Modular Forms

the system is closed under modular transformation

Simplest Case: I 2 \sim S 3

Simplest Case: I 2 \sim S 3

DM & Matteo Parriciatu, 2306.09028 [hep-ph]

Guiding principles for model buildings:

small number of operators (few free parameters) → **predictability**

no new matter fields → **minimality**

no new scalar fields beside Higgs(es) → **symmetry breaking dictated by the vev of** τ

charged lepton hierarchy by symmetry arguments → "**appealing"**

 $|Y_2(\tau)/Y_1(\tau)| \ll 1$ for τ in D

fit to all low energy neutrino data → **useful**

Texture zeros – minimal # of free parameters

Charged leptons

$$
\text{modular forms of weight 4}
$$
\n
$$
M_{\ell} = \begin{pmatrix}\n\alpha(Y_2^{(2)})_1 & \alpha(Y_2^{(2)})_2 & 0 \\
\beta Y_2 & -\beta Y_1 & 0 \\
0 & 0 & \gamma\n\end{pmatrix} v_d\n\begin{pmatrix}\n m_e = v_d \alpha \left(|Y_1^2| - \frac{7}{2} |Y_1^2| |\epsilon|^2 + \mathcal{O}(\epsilon^3) \right) \\
 m_\mu = v_d \alpha \left(\frac{\beta}{\alpha} |Y_1| + \frac{1}{2} \frac{\beta}{\alpha} |Y_1| |\epsilon|^2 + \mathcal{O}(\epsilon^3) \right) \\
 m_\tau = v_d \alpha \left(\frac{\gamma}{\alpha} \right) .\n\end{pmatrix}
$$

Charged leptons

Mass hierarchy scaling naturally reproduced ! (no fit so far...)

Ready for Neutrinos: key ingredient is to fix k_{i}

several possible choices. The best one gives (k_I=2):

$$
m_{\nu}^{k_{\ell}=2} = \frac{2gv_{u}^{2}}{\Lambda} \left[\begin{pmatrix} -(Y_{2}^{2} - Y_{1}^{2}) & 2Y_{1}Y_{2} & \frac{g'}{2g}2Y_{1}Y_{2} \\ 2Y_{1}Y_{2} & (Y_{2}^{2} - Y_{1}^{2}) & -\frac{g'}{2g}(Y_{2}^{2} - Y_{1}^{2}) \\ \frac{g'}{2g}2Y_{1}Y_{2} & -\frac{g'}{2g}(Y_{2}^{2} - Y_{1}^{2}) & 0 \end{pmatrix} + \begin{pmatrix} \frac{g''}{g}(Y_{1}^{2} + Y_{2}^{2}) & 0 & 0 \\ 0 & \frac{g''}{g}(Y_{1}^{2} + Y_{2}^{2}) & 0 \\ 0 & 0 & \frac{g''}{g}(Y_{1}^{2} + Y_{2}^{2}) \end{pmatrix} \right]
$$

Independent parameters: Re(τ), Im(τ), β/α, γ/α, g'/g, g''/g, g_p/g

Numerical fit Mass matrices against the experimental data

Numerical fit Mass matrices against the experimental data

data fit results $\pm 0.0895^{+0.0032}_{-0.0055}$ $\mathop{\mathrm{Re}} \tau$ $r \equiv \Delta m^2_{\rm sol}/|\Delta m^2_{\rm atm}|$ 0.0296 ± 0.0008 $1.697_{-0.016}^{+0.023}$ $\text{Im}\,\tau$ $0.303_{-0.013}^{+0.013}$ $\sin^2\theta_{12}$ χ^2 ~ O(0.1) $14.33_{-0.38}^{+0.58}$ β/α $0.0223_{-0.0006}^{+0.0007}$ $\sin^2\theta_{13}$ $17.39_{-0.87}^{+1.38}$ γ/α $0.455_{-0.015}^{+0.018}$ $\sin^2\theta_{23}$ $31.57\substack{+27.59 \\ -10.29}$ g'/g $7.17_{-2.36}^{+6.36}$ m_e/m_μ g''/g 0.0048 ± 0.0002 $8.51_{-3.03}^{+7.99}$ m_μ/m_τ g_p/g 0.0565 ± 0.0045

predictions

correlations

• the CP-violating phase is in agreement (within the 2σ range) with the global analysis of oscillation data

• values of the sum of neutrino masses is around 0.090 eV, which is compatible with the present upper bound of 0.115 eV (95 % C.L.)

• the Majorana effective mass lies around ∼20 meV, not too far from the recent KamLAND-Zen upper bound | $m\beta$ | < (36 – 156) meV

• Majorana phases $α1$, $α2$ live in narrow regions around ±1.13π, ±0.95π Modular symmetries offer an alternative way for model building

Yukawa couplins dictated by modular forms

symmetry breaking by the vev of tau only

A lot to do:

Backup slides

Constructing the Modular Forms

Crucial observation:

d ^τ

if
\n
$$
g(\tau) \rightarrow e^{i\alpha}(c \tau + d)^{k} g(\tau)
$$
\nthen
\n
$$
\frac{d}{d \tau} \log[g(\tau)] \rightarrow (c \tau + d)^{2} \frac{d}{d \tau} \log[g(\tau)] + kc(c \tau + d)
$$
\nthis term prevents of having a modular form
\n
$$
\frac{d}{d \tau} \sum_{i} \log[g_{i}(\tau)] \rightarrow (c \tau + d)^{2} \frac{d}{d \tau} \sum_{i} \log[g_{i}(\tau)] + (\sum_{i} k_{i}) c(c \tau + d)
$$

d ^τ

with $\Sigma_i k_i = 0$

41

Constructing the Modular Forms

Equations to be satisfied:

$$
\begin{pmatrix} Y_1(-1/\tau) \\ Y_2(-1/\tau) \end{pmatrix} = \tau^2 \rho(S) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}, \qquad \begin{pmatrix} Y_1(\tau+1) \\ Y_2(\tau+1) \end{pmatrix} = \rho(T) \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}
$$

 \mathbf{I}

*Y*₁(α,β, *y*)∼*Y* (1,1,−2) *Y*₂

 $Y_2(\alpha, \beta, \gamma) \sim Y(1, -1, 0)$

$$
Y_1(\tau) = \frac{i}{4\pi} \left(\frac{\eta'(\tau/2)}{\eta(\tau/2)} + \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} - \frac{8\eta'(2\tau)}{\eta(2\tau)} \right) Y_2(\tau) = \frac{\sqrt{3}i}{4\pi} \left(\frac{\eta'(\tau/2)}{\eta(\tau/2)} - \frac{\eta'((\tau+1)/2)}{\eta((\tau+1)/2)} \right),
$$

 α ublet of S3: Y

representation of generators

 $\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

 $(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}$

Kahler potential

Under Γ :

$$
\begin{cases}\n\tau \to \frac{a\tau + b}{c\tau + d} \\
\varphi^{(I)} \to (c\tau + d)^{-k_I} \rho^{(I)}(\gamma) \varphi^{(I)}\n\end{cases}
$$

The invariance of the action requires the invariance of the superpotential w(Φ) and the invariance of the Kahler potential up to a Kahler transformation:

$$
\begin{cases}\nw(\Phi) \to w(\Phi) \\
K(\Phi, \bar{\Phi}) \to K(\Phi, \bar{\Phi}) + f(\Phi) + f(\bar{\Phi})\n\end{cases}
$$

Kahler potential:

$$
\sum_{I}(-i\tau+i\bar{\tau})^{-k_I}|\varphi^{(I)}|^2 \longrightarrow
$$

modular invariant kinetic terms

$$
\frac{h}{\langle-i\tau+i\bar\tau\rangle^2}\partial_\mu\bar\tau\partial^\mu\tau+\sum_I\frac{\partial_\mu\overline\varphi^{(I)}\partial^\mu\varphi^{(I)}}{\langle-i\tau+i\bar\tau\rangle^{k_I}}
$$

a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup which is invariant under conjugation by members of the group of which it is a part: a subgroup N of the group G is normal in G if and only if $(g \nvert g^{-1}) \in N$ for all $g \in G$ and $n \in N$

G**(N), N>=2** are infinite normal subgroups of Γ, called principal congruence subgroups

the group $\Gamma(N)$ acts on the complex variable τ (Im τ > 0)

$$
\gamma \tau = \frac{a \tau + b}{c \tau + d}
$$

And it can be shown that the upper half-plane is mapped to itself under this action. The complex variable is henceforth restricted to have positive imaginary part

Modular Functions and Modular Forms J. S. Milne

DEFINITION 0.2. A holomorphic function $f(z)$ on $\mathbb H$ is a *modular form of level* N and weight 2k if

(a)
$$
f(\alpha z) = (cz+d)^{2k} \cdot f(z)
$$
, all $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N)$;

(b) $f(z)$ is "holomorphic at the cusps".

<u>Fundamental domain</u> of τ on SL(2,Z): connected open subset such that no two points of D are equivalent under SL(2,Z)

THEOREM 2.12. Let
$$
D = \{z \in \mathbb{H} \mid |z| > 1, |\Re(z)| < 1/2\}
$$
.

(a) D is a fundamental domain for $\Gamma(1) = SL_2(\mathbb{Z})$; moreover, two elements z and z' of \bar{D} are equivalent under $\Gamma(1)$ if and only if (i) $\Re(z) = \pm 1/2$ and $z' = z \pm 1$, (then $z' = Tz$ or $z = Tz'$), or (ii) $|z| = 1$ and $z' = -1/z = Sz$.

Constructing the Modular Forms

Under **S**: $Y(\alpha, \beta, \gamma) \rightarrow \tau^2 Y(\gamma, \alpha, \beta)$

representation of generators

$$
\rho(S) = \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ -\sqrt{3} & 1 \end{pmatrix}, \qquad \rho(T) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$

$$
(\rho(S))^2 = \mathbb{I}, \qquad (\rho(S)\rho(T))^3 = \mathbb{I}, \qquad (\rho(T))^2 = \mathbb{I}
$$

Dedekind eta functions

$$
\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) \qquad q \equiv e^{i2\pi\tau}
$$

Under T:

\n
$$
\begin{cases}\n\eta(2 \tau) \rightarrow e^{i \pi/6} \eta(2 \tau) \\
\eta(\tau/2) \rightarrow \eta((\tau+1)/2) \\
\eta((\tau+1)/2) \rightarrow e^{i \pi/12} \eta(\tau/2)\n\end{cases}
$$

Under S:

\n
$$
\begin{aligned}\n\eta(2 \tau) &\to \sqrt{-i \tau/2} \eta(\tau/2) \\
\eta(\tau/2) &\to \sqrt{-2i \tau} \eta(2 \tau) \\
\eta\left(\frac{(\tau+1)}{2}\right) &\to e^{-i\pi/12} \sqrt{-i \tau(\sqrt{3}-i)} \eta\left(\frac{(\tau+1)}{2}\right)\n\end{aligned}
$$

 $Id[a_1, b_2] := \{\{Mod[a, b], 0\}, \{0, Mod[a, b]\}\}\$

$$
Id[-1, 2] \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$

$$
Id[-1, 3] \qquad \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}
$$

Origin of modular symmetry

Two periods in complex functions $f: C \rightarrow C$

elliptic function:

$$
f(z + \omega_1) = f(z + \omega_2) = f(z)
$$

periods \in C such that $\omega_2/\omega_1 \notin \Re$

a lattice Λ can be generated in the complex plane, spanned by the two directions ω1, ω²

$$
\Lambda = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2 = \{n_1\omega_1 + n_2\omega_2 \,|\, n_1, n_2 \in \mathbb{Z}\}\
$$

elliptic functions are translation-invariant in this lattice: $f(z + \lambda) = f(z)$ for $\lambda \in \Lambda$

Thus, an elliptic function is single-valued on the quotient C/Λ, which is topologically known as a torus (T2).

Rescaling of the periods:

 $\omega_1 = 1$ and $\omega_2/\omega_1 = \tau$, where τ is called the *modulus*

the torus is represented by a parallelogram with vertices $z = 0$, $z = 1$, $z = \tau$ and z $=$ τ + 1 where the opposite sides are pairwise identified

courtesy by Matteo Parriciatu, Master Thesis

The lattice Λ can be equivalently described by a different basis (ω'_1 , ω'_2) related to the old by a linear map with integer parameters:

$$
\begin{pmatrix} \omega_2' \\ \omega_1' \end{pmatrix} = \gamma \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} \equiv \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \omega_2 \\ \omega_1 \end{pmatrix} , \qquad a, b, c, d \in \mathbb{Z}
$$

Long (not updated) list from **S.T. Petcov, Bethe Forum, University of Bonn, 04/05/2022**

For $(\Gamma_3 \simeq A_4)$, the generating (basis) modular forms of weight 2 were shown to form a 3 of A_4 (expressed in terms of log derivatives of Dedekind *n*-function η'/η of 4 different arguments).

F. Feruglio. arXiv:1706.08749

For $(\Gamma_2 \simeq S_3)$, the two basis modular forms of weight 2 were shown to form a 2 of S_3 (expressed in terms of η'/η of 3 different arguments).

T. Kobayashi, K. Tanaka, T.H. Tatsuishi, arXiv:1803.10391

For $(\Gamma_4 \simeq S_4)$, the 5 basis modular forms of weight 2 were shown to form a 2 and a 3' of S_4 (expressed in terms of η'/η of 6 different arguments).

J. Penedo, STP. arXiv:1806.11040

For $(\Gamma_5 \simeq A_5)$, the 11 basis modular forms of weight 2 were shown to form a 3, a 3' and a 5 of A_5 (expressed in terms of Jacobi theta function $\theta_3(z(\tau),t(\tau))$ for 12 different sets of $z(\tau)$, $t(\tau)$).

P.P. Novichkov et al., arXiv:1812.02158; G.-J. Ding et al., arXiv:1903.12588

Multiplets of higher weight modular forms have been also constructed from tensor products of the lowest weight 2 multiplets:

i) for $N = 4$ (i.e., S_4), multiplets of weight 4 (weight $k \le 10$) were derived in arXiv:1806.11040 (arXiv:1811.04933);

ii) for $N = 3$ (i.e., A_4) multiplets of weight $k \le 6$ were found in arXiv:1706.08749;

iii) for $N = 5$ (i.e., A_5), multiplets of weight $k \le 10$ were derived in arXiv:1812.02158.

Highest level modular form:

$$
Y_2^{(1)}(\tau) \otimes Y_2^{(1)}(\tau) = (Y_1^2(\tau) + Y_2^2(\tau))_1 \oplus \begin{pmatrix} Y_2^2(\tau) - Y_1^2(\tau) \\ 2Y_1(\tau)Y_2(\tau) \end{pmatrix}_2
$$