PHENIX Spin Measurements: from pp to pA

Nucleon helicity structure
Transverse spin phenomena in p+p
Polarized p + A

A.Bazilevsky (BNL)

For PHENIX Collaboration

XII International Conference on New Frontiers in Physics 10-23 July 2023, OAC, Kolymbari, Crete, Greece

PHENIX Spin @ RHIC

pin Running in PHENIX, long./trans.			
Year	√s [GeV]	L [pb ⁻¹] (recorded)	Pol. [%]
2002	200	- / 0.15	15
2003	200	0.35 / -	27
2004	200	0.12 / -	40
2005	200	3.4 / 0.2	49
2006	200	7.5 / 2.7	57
2006	62.4	0.08 / 0.02	48
2008	200	- / 5.2	45
2009	200	16 / -	55
2009	500	14 / -	39
2011	500	18 / -	48
2012	200	- / 10	56
2012	510	32 / -	56
2013	510	155 / -	56
2015	200	- /60	58
2015	pAu@200	- /0.2	61
2015	pAl@200	- /0.5	58

PHENIX Detector

π⁰, γ, η

Electromagnetic Calorimeter: |η|<0.35 Muon Piston Calorimeter: 3.1<|η|<3.9

 π^{\pm} , e, $J/\psi \rightarrow e^+e^-$, $W \rightarrow e$: $|\eta| < 0.35$ Drift, Pad Chambers, VTX ($|\eta| < 1$) Ring Imaging Cherenkov Counter, ToF Electromagnetic Calorimeter VTX

 μ , h[±], J/ $\psi \rightarrow \mu^+ \mu$, W $\rightarrow \mu$: 1.2< $|\eta|$ <2.4 Muon Id/Muon Tracker FVTX

Relative Luminosity

Beam Beam Counter (BBC) Zero Degree Calorimeter (ZDC)

Local Polarimetry – ZDC & SMD Spin direction control

Proton Spin Decomposition

Naïve parton model:

 $\frac{1}{2} = \frac{1}{2} \left(\Delta u_v + \Delta d_v \right)$

1989 EMC (CERN): $\Delta \Sigma = 0.12 \pm 0.09 \pm 0.14$ $\Delta \Sigma = \Delta u + \Delta d + \Delta s + \Delta \overline{u} + \Delta \overline{d} + \Delta \overline{s}$ $\implies \text{Spin Crisis}$

⇒ Gluons are polarized (Δ G) ⇒ Sea quarks are polarized:

$$\frac{1}{2} = \frac{1}{2} \left(\Delta q + \Delta \overline{q} \right) + \Delta G$$

For complete description include parton orbital angular momentum L₇:

$$\stackrel{\bullet}{=} \frac{1}{2} = \frac{1}{2} \left(\Delta q + \Delta \overline{q} \right) + \Delta G + L_Z$$

Determination of ΔG and Δq -bar has been the main A.Bazilevsky, ICNFI goal of longitudinal spin program at RHIC

Non-zero A_{LL} associated with non-zero ΔG !

$\Delta G: DIS+pp global QCD fit$

DSSV:

D. de Florian R. Sassot M. Stratmann W. Vogelsang

pp: PHENIX $\pi 0+$ STAR jet

0

DSSV: Phys Rev Lett, 101, 072001 (2008) Data from up to 2006

New DSSV: Phys Rev Lett, 113, 012001 (2014) Data from up to 2009

$$\int_{0.5}^{1} dx \Delta g(x) = 0.2_{-0.07}^{+0.06} \qquad (90\% \text{ CL})$$

Significant non-zero $\Delta g(x)$ in the kin. region probed by RHIC Similar result from another global fit NNPDF

Sign is not yet reliably defined

=> Need cleaner prob, e.g. direct photons

Still huge uncertainty in unmeasured region (x < 0.05)

=> Measurements at higher \sqrt{s} and forward rapidity

ΔG : Confirm the Sign

Direct photon - a golden channel to probe gluons

PRL130, 251901 (2023)

See Zhongling Ji talk on July 14

JAM collaboration: Sign is not defined

PHENIX:

Clear preference for positive ΔG

Probes lower x down to $\sim 10^{-3}$

 γ , η , $\pi \pm$, $h \pm$, heavy flavor through e and μ , h-h, γ -h

 Δq -bar: $W^{\pm} \rightarrow e^{\pm}, \mu^{\pm} \frac{1}{2} = \frac{1}{2} (\Delta q + \Delta \bar{q}) + \Delta G + L_z$

 $e^{\pm}: |\eta| < 0.35 \quad \mu^{\pm}: 1.2 < |\eta| < 2.4$

Constrains flavor separated (anti-)quark polarization at high $Q \sim M_W$ at x>0.05, with no fragmentation involved (as in SIDIS)

PRD 98, 032007 (2018)

Data generally agree with current theory constraint, with some tension in backward region, leading to a preference of ubar polarization to be more positive and dbar polarization to be more negative

STAR: PRD99, 051102 (2019)

A.Bazilevsky, ICNFP-2023

Transverse Spin Asymmetries

Large Transverse Spin Asymmetries have been observed in $p^{\uparrow}p$

10

Forward-rapidity $\pi 0 A_N$

PRD90, 012006 (2014)

Collinear (higher twist) pQCD predicts $A_N \sim 1/p_T$?

No fall off is observed out to $p_T \sim 5 \text{ GeV/c}$ STAR showed no fall off up to $\sim 7 \text{ GeV/c}$ Naïve collinear pQCD predicts $A_N \sim \alpha_s m_q / p_T \sim 0$ Asymmetries survive at highest \sqrt{s} Non-perturbative regime! Asymmetries of the ~same size at all \sqrt{s} Asymmetries scale with x_F

A.Bazilevsky, ICNFP-2023

Transverse Spin Physics

Initial State:

Sivers/Twist3 mechanism

- \triangleright A_N for jets, direct photons
- \succ A_N for heavy flavor \rightarrow gluon
- \succ A_N for W, Z, DY

Final State:

Collins mechanism

- ➢ Hadron azimuthal asymmetry in jet
- Hadron pair azimuthal asymmetry (Interference fragmentation function)

Quark transversity

 \succ Tensor charge

Sensitive to correlations proton spin – parton transverse motion

Not universal between SIDIS & pp

Sensitive to transversity x spin-dependent FF

Universal between SIDIS & pp & e+e-

Parton dynamics3D imaging

Other mechanisms

Diffraction

A.Bazilevsky, ICNFP-2023

Mid-rapidity $\pi 0$ and ηA_N

PRD103, 052009 (2021)

Consistent with 0 To $\sim 3 \times 10^{-4}$ precision level at $\pi 0$ low p_T

Sensitive to gluon dynamics

Used to constrain gluon Sivers effect: Anselmino et al, PRD 74 (2006), 094011 D'Alesio et al, JHEP 1509 (2015), 119

Direct Photon A_N

PRL127, 162001 (2021)

- ✓ First direct γ A_N from RHIC
- ✓ ×50 times reduced uncertainty compared to the only prior measurement at E704 (Fermilab)
- Clean prob of initial state effect (no fragmentation)
- ✓ Constraints gluon dynamics within proton (through gluongluon correlation function)

Heavy Flavor A_N

PRD107, 052012 (2023)

Dominated by gluon-gluon fusion

Used to constrain tri-gluon correlation in the Twist-3 collinear framework

Z.Kang, J.Qiu, W.Vogelsang, F.Yuan, PRD78,114013

Y.Koike, S.Yoshida, PRD84,014026

Comparison of charges provides further sensitivities

First $p^{\uparrow} + A$ data !!!

A_N: Central rapidity

 $\pi 0$ at $|\eta| < 0.35$

PRD107, 112004 (2023)

Very high precision data $\sigma_A \sim 3 \times 10^{-4} (10^{-3})$ at lowest pT in pp (pA) A_N consistent with 0 for all systems To be used to constrain gluon Sivers fct.

A_N: Forward rapidity

h+ at 1.2 $< |\eta| < 2.4$

PRL123, 122001 (2019)

Theory expects $A_N \sim 1/A^{1/3}$ due to gluon saturation

Z.Kang and F.Yuan, PRD 84, 034019 (2011)

Supported by our data

However:

In this kin. region no sensitivity to gluon saturation is expected

A.Bazilevsky, ICNFP-2023

Different source of asymmetry? Other nuclear effects?

A_N: Very forward rapidity

n at $|\eta| > 6.8$

PRL 120, 022001 (2018)

- Strong dependence on A and particle production in other rapidity regions
 - > Likely multiple mechanisms contribute

One pion exchange: B.Kopeliovich et al PRD 84, 114012

Electromagnetic interaction: G.Mitsuka, PRC95 044908

Correlation with particle production in other rapidities, and different A and Vs will help to isolate different channels

Summary

How do gluon contribute to the proton Spin Non-zero positive (in the limited x-range) and comparable to (or larger than) quark contribution Data at lower x coming

- → What is the flavor structure of polarized sea in the proton $A_L(W)$ will contribute to $\Delta \overline{u}$ and $\Delta \overline{d}$
- What are the origins of transverse spin phenomena in QCD $A_N(\pi^0,\eta)$, central and forw; $A_N(\text{Heavy Flavor, J/\psi}) =>$ gluon Sivers
- > First p^A data !

A wealth of exciting results awaiting for theoretical interpretation

Proton spin decomposition

Parton dynamics 3D imaging

Probing nuclear matter effects

Backup

From DIS to pp:

Probes ΔG :

Q² dependence of structure fct

Photon-gluon fusion

(Anti-)quark flavor separation:

Through fragmentation processes

Probes ΔG :

Directly from gg and qg scattering

(Anti-)quark flavor separation: Through $ud \to W^+$ and $ud \to W^-$

Complementary approaches

W: Central vs Forward region

Clear Jacobian peak at central rapidities

Suppressed/No Jacobean peak at forward rapidities

 Δq -bar: W[±] \rightarrow e[±] $|\eta| < 0.35$

Constrains flavor separated (anti-)quark polarization at high $Q \sim M_W$ at x>0.05, with no fragmentation involved (as in SIDIS)

 $A_{L} = \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}}$ $A_{L}^{W^{+}} = \frac{-\Delta u(x_{1})\overline{d}(x_{2}) + \Delta \overline{d}(x_{1})u(x_{2})}{u(x_{1})\overline{d}(x_{2}) + \overline{d}(x_{1})u(x_{2})}$

PRD93, 051103 (2016)

Symmetry breaking in polarized sea?

Unpolarized sea is not symmetric

Polarized sea symmetric may be broken too!

Already available data (Run13) will improve the measurement further

A_N: Forward rapidity

PRD 98, 012006 (2018)

J/ψ at 1.2< $|\eta|$ <2.4

 J/ψ production sensitive to gluon distribution

 A_N sensitive to J/ψ production mechanism

F.Yuan, PRD78, 014024:

For non-zero gluon Sivers, A_N vanishes in color octet model, but survives in color singlet model

```
In p+p and p+A1: A_N \sim 0
```

In p+Au: trends to $A_N < 0$

??

A.Bazilevsky, ICNFP-2023

$J/\psi A_N$

 $\Box J/\psi A_N$ is sensitive to the production mechanisms

- Assuming a non-zero gluon Sivers function, in pp scattering, $J/\psi A_N$ vanishes if the pair are produced in a color-octet model but survives in the color-singlet model
- Feng Yuan, Phys. Rev D78, 014024(2008)

$\pi 0 A_N$ in pA

Probing gluon saturated matter, Color Glass Condensate (CGC) with polarized protons

Kang, Yuan: PRD84, 034019 Kovchegov, Sievert: PRD86, 034028

- Unique RHIC possibility p[↑]A
- Synergy between CGC based theory and transverse spin physics
- Suppression of A_N in p[↑]A provides sensitivity to Q_s
- > Data already collected in Run-2015!

A_N: Forward rapidity

S.Benic and Y.Hatta, PRD99, 094012 (Twist-3 fragmentation + gluon saturation)

" $< p_T > 2.9 \ GeV/c$ is too hard to be sensitive to the saturation scale $Q_S^{Au} \sim 0.9 \ GeV$ This makes the PHENIX result even more striking."

Different source of hadron A_N ?

Other nuclear effects?

Any connection with QGP formation in pA?

A.Bazilevsky, ICNFP-2023

Color Interaction in QCD

Controlled non-universality of Sivers function

Sivers_{DIS} = $-(Sivers_{DY} \text{ or } Sivers_W \text{ or } Sivers_Z)$ A_N(dir. γ) has related sign change in Twist-3

> Critical test of TMD factorization All observables can be explored at RHIC

A_N: Very forward rapidity

n at $|\eta| > 6.8$

PRD 105, 032004 (2022)

