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Introduction
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• Standard Model (SM): very successful theory
• Precise predictions, verified by experiment with impressive 
agreement with theory across orders of magnitude
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• Cannot be the ultimate theory
• Several open questions in HEP

• What is Dark Matter?
• Neutrinos have a mass ≠ 0
• Matter and antimatter are not symmetric
• …

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-009/fig_01a.pdf
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Introduction
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To date, O(100) ATLAS, CMS, LHCb papers 
on BSM searches with full Run 2 dataset! 

Still, no evidence of new physics…
BSM=/➝LLP 
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Figure 1. Summary of some top-down theoretical motivations for LLP signals at MATHUSLA. Figure taken
from [46].

ety of models that address the Hierarchy Problem, the nature of Dark Matter, the Baryon Asymmetry
of the Universe, and the origin of neutrino masses. All of these fundamental mysteries of the SM can
be addressed by theoretical frameworks that give rise to LLP production at the LHC. Furthermore,
there are many scenarios where observation of LLP decays at MATHUSLA represents the first or
only discovery opportunity. This is summarized schematically in Fig. 1.

For example, the hierarchy problem could be addressed by Neutral Naturalness [12–14], where
the Higgs mass is stabilized at low scales by a hidden valley that is related to the SM by a discrete
symmetry. Crucially, the top partners that cancel the top quark contributions to the Higgs mass are not
charged under SM QCD, making these scenarios unconstrained by standard SUSY searches. How-
ever, the hidden valley gives rise to LLP signatures, such as mirror glueballs, which can be produced
in exotic Higgs decays [89, 90]. In the long lifetime regime, MATHUSLA is the only way to discover
these new states. Even standard SUSY scenarios like R-parity violation and gauge mediation give
rise to LLP signatures (a scenario made perhaps more likely by the discovery of a relatively light 125
GeV Higgs boson [91–93]). The same is true of many Dark Matter models, especially if the DM
candidate is part of a dark sector with a variety of hidden states, some of which can be long-lived. In
some theories, like Freeze-In DM [27, 94] or Dynamical DM [31, 32] the LLP plays a crucial role in

– 5 –

New physics could have long lifetimes

Signatures in ATLAS and CMS not visible 
in standard searches!!

Curtin et al, 1806.07396 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-034/fig_01.png
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That depends on:

LLP lifetime

How can we look for LLPs in collider experiments?
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Figure by 
H. Russell
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That depends on:

LLP lifetime LLP nature object identification

How can we look for LLPs in collider experiments?

5

• Is it charged? 
• Does it leave a standard track?
• Is it highly ionising?

• Is it neutral?
• which decay mode (hadronic, 
leptonic, photons, invisible)?

• None of these signatures would be 
“seen” by a standard HEP search!
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That depends on:

LLP lifetime LLP nature object identification trigger

How can we look for LLPs in collider experiments?

• Trigger: combination of hardware + software that must decide very quickly whether to save an event or lose it forever

• Standard triggers have no sensitivity to LLPs

• Develop dedicated triggers

6
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That depends on:

LLP lifetime LLP nature object identification trigger background rejection

• Small or unusual backgrounds play a key role: 

• For most of them, no good simulations  

• All searches rely on data-driven methods 

material interactions
beam halo muonscosmic muons

SM particles with 
relatively long lifetime

How can we look for LLPs in collider experiments?

7
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LLP lifetime LLP nature object identification trigger background rejection

Latest results 
on 

Searches for LLPs 
in ATLAS

8
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Micro-displaced muons
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ANA-SUSY-2020-09

• Search for pairs of opposite charge muons with O(mm) impact parameter 

• GMSB SUSY with nearly massless gravitino LSP and long-lived slepton ( !̃,  "̃,  #̃ NLSP)                     
due to small coupling to the LSP

• Di-muon trigger 
• Very simple Signal Region selection: two muons with large transverse impact parameter |$0| > 0.6 mm

• Dominant SM background: semileptonic %-hadron 
decays, && -> # # 
• Data driven background ABCD method 

• Other SM processes with prompt leptons are negligible 
('/(+jets, )), single top, di-boson)

|$0| > 0.1 mm to reduce SM processes 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-09/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-09/
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Micro-displaced muons
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ANA-SUSY-2020-09
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• 15 Validation regions to test the ABCD method
• General good agreement
• One region has a 2* non-closure 

• Systematic uncertainty assigned in the signal region. • No excess observed 

Closing the gap between 
prompt (reinterpretation) 
and large displacement 

searches

Excluded lifetimes 
down to 1 ps for 

m(~#) ~ 100 GeV 

Excluded lifetimes 
down to 10 ps for 
m(~#) ~ 520 GeV 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-09/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2020-09/
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IDTR-2021-03
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• Standard tracking in ATLAS optimized for particles pointing back to IP
• tight requirements in number of silicon hits and impact parameter
• would reject tracks from displaced decays

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/IDTR-2021-03/
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Large-Radius Tracking

• Large radius tracking (LRT)
• Relax requirements in number of hits and impact parameter 
• Re-run with hits not associated with standard tracks

• Standard tracking in ATLAS optimized for particles pointing back to IP
• tight requirements in number of silicon hits and impact parameter
• would reject tracks from displaced decays Track

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/IDTR-2021-03/
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 Large-Radius Tracking

• Large radius tracking (LRT)
• Relax requirements in number of hits and impact parameter 
• Re-run with hits not associated with standard tracks
• Improves reconstruction for displacements up to 300 mm

• LRT running at HLT trigger level in Run 3!! 

• Standard tracking in ATLAS optimized for particles pointing back to IP
• tight requirements in number of silicon hits and impact parameter
• would reject tracks from displaced decays
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/IDTR-2021-03/
https://cds.cern.ch/record/2807744
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Displaced vertices + jets
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SUSY-2018-13

• Long-lived particles decaying into hadrons in the ATLAS inner detector
• SM (MSSM) +-parity-violating (RPV) 

• mean proper lifetimes ! up to ,(10) ns

• 2. additional tracks with looser selection 
criteria are attached to the reconstructed 
vertices
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• Using LRT in events with multiple energetic jets and a displaced vertex
• Vertexing:

• 1. two-track seed vertices, where at least one track with |$0| > 2 mm
• iteratively merged to form --track vertices

requirement on 
two-track seed 

vertices must have 
|$0| > 2mm

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-13/
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SUSY-2018-13

• Three main sources of background: 
• hadronic interactions: detector material
• accidental crossings: low-mass displaced vertices crossed by an unrelated track
• merged vertices: close-by low-mass displaced vertices
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• Neutralinos with 
m=1.5TeV excluded with 
lifetimes in the range of 
0.02 ns to 4 ns

Displaced vertices + jets

• Reject them with DV selection:
• DV at least 4 mm away from any collision vertex
• DVs must satisfy a material map veto
• DVs must have at least five tracks
• .DV > 10 GeV

• Data-driven technique that predicts the rate of DVs from all 
three sources above

• Reach ~zero background analysis

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-13/
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Displaced jets
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Charged LLPs
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• Pair production of different long-lived sparticles of charge |/| = 1 

• isolated tracks with high transverse momenta (pT) and anomalously large 
specific ionisation losses (d0/dx)  

• particles are expected to move significantly slower than the speed of light 

• Use MET triggers 

• Fully data-driven background estimation! High pT track with 
large dE/dx LSP = MET

Large dE/dx

17

JHEP06(2023)158

https://link.springer.com/article/10.1007/JHEP06(2023)158
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Charged LLPs
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• 3.3 σ global excess!! 

• Is this New Physics???
• Maybe, though… from TOF measurements: none 

of the candidate tracks are from charged particles 
moving significantly slower than the speed of light ☹

• Analysis ongoing in Run 3!

18

Large dE/dx JHEP06(2023)158

• Pair production of different long-lived sparticles of charge |/| = 1 

• isolated tracks with high transverse momenta (pT) and anomalously large 
specific ionisation losses (d0/dx)  

• particles are expected to move significantly slower than the speed of light 

• Use MET triggers 

• Fully data-driven background estimation!

https://link.springer.com/article/10.1007/JHEP06(2023)158
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Multicharged particles
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EXOT-2018-54
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• Search for heavy long-lived multi-charged particles (MCP) with high ionization 
(higher electric charges and lower velocities) 

• range of electric charges from |/| = 2" to |/| = 7" 
• live long enough to traverse the entire ATLAS detector 

• Triggers: Muon, MET, late-muon trigger 

• Select high-1T muon-like tracks with high $0/$2 values in several subdetector 

systems: pixel ID, TRT, MDT
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-54/
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Multicharged particles
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EXOT-2018-54
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• Background mainly consists of: 

• high-pT muon reconstructed from several muons losing their energy 
in the same detector elements 

• sporadic-noise  

• All background estimated by using a data-driven technique.

• |q| = 2" particles excluded for m < 1060GeV 

• |q| = 6" particles excluded for m < 1600GeV

z=2 z>2

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2018-54/
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Strong RPV: !" → $$ !%& (→ $$$)
) !" = 1.8 TeV,)( !%&) = 200 GeV, 5 = 0.1 ns

DV properties
(x, y, z) : (26.9, 19.0, 51.4) mm
mass : 107.1 GeV (14 tracks)! = 13 TeV

CONCLUSIONS

21

SUSY-2018-13

• LLPs might be the key for finding BSM physics

• LLPs are gaining interest!

• Great effort at the LHC experiments to search for LLPs… 
BUT! still some signatures to be exploited

• Development of new tools and strategies to improve 
identification of LLPs, pushing the detector beyond its 
original design capabilities

• Run 3 and HL-LHC offer a great opportunity to innovate 
and plan for new unconventional searches 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-13/
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LRT at HLT trigger level

22
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Multicharged particles
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EXOT-2018-54
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