

Searches for BSM physics using challenging and Long-Lived signatures with that ATLAS detector

Vņiver§itat

DÖVALÈNCIA

PID2021-124912NB-I00

XII International Conference on New Frontiers in Physics 10-23 July 2023, OAC, Kolymbari, Crete, Greece

Emma Torró, on behalf of the ATLAS Collaboration IFIC - Valencia

Introduction

- Standard Model (SM): very successful theory
- Precise predictions, verified by experiment with impressive agreement with theory across orders of magnitude

Cannot be the ultimate theory

Several open questions in HEP

• What is Dark Matter?

. . .

- Neutrinos have a mass $\neq 0$
- Matter and antimatter are not symmetric

Introduction

To date, **O(100) ATLAS, CMS, LHCb papers** on BSM searches with full Run 2 dataset!

Still, no evidence of new physics...

A	TLAS Heavy Pa	rticle	Searc	ches	s* - 9	5% CL l	Jpper Ex	clusion	Limits		ATLA	4S Preliminary
Sta	atus: July 2022									$\int \mathcal{L} dt = (3)$	$3.6 - 139) ext{ fb}^{-1}$	\sqrt{s} = 8, 13 TeV
	Model	<i>ℓ</i> ,γ	Jets†	E_T^miss	∫£ dt[fb	-1]	Lir	nit				Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell\nu qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \ \gamma \\ - \\ 2 \ \gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4 \ j \\ -2 \ j \\ \geq 3 \ j \\ -2 \ j \\ \geq 1 \ b, \geq 1 \ J \\ \geq 2 \ b, \geq 3 \ j \end{array}$	Yes – – – Yes Yes Yes	139 36.7 139 3.6 139 36.1 139 36.1 36.1	MD Ms Mth GKK mass GKK mass GKK mass KK mass KK mass			4.5 2.3 TeV 2.0 TeV 3.8 Te ^V 1.8 TeV	11.2 Te 8.6 TeV 9.4 TeV 9.55 TeV TeV	V n = 2 n = 3 HLZ NLO n = 6 n = 6, M _D = 3 TeV, rot BH $k/\overline{M}_{PI} = 0.1$ $k/\overline{M}_{PI} = 1.0$ $k/\overline{M}_{PI} = 1.0$ Γ/m = 15% Tier (1,1), $\mathcal{B}(A^{(1,1)} → tt) = 1$	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to tb \\ \text{HVT } W' \to WZ \to \ell\nu \ell'\ell \text{ model} \\ \text{HVT } W' \to WZ \to \ell\nu \ell'\ell' \text{ model} \\ \text{HVT } W' \to WH \to \ell\nu bb \text{ model} \\ \text{HVT } W' \to ZH \to \ell\ell/\nu bb \text{ model} \\ \text{HVT } Z' \to ZH \to \ell\ell/\nu \nu bb \text{ model} \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ B \ 1 \ e, \mu \\ \ominus \ C \ 3 \ e, \mu \\ B \ 1 \ e, \mu \\ \ominus \ B \ 0, 2 \ e, \mu \\ 2 \ \mu \end{array}$	$\begin{array}{c} - \\ 2 \ b \\ \geq 1 \ b, \geq 2 \ J \\ 2 \ j / 1 \ J \\ 2 \ j / 1 \ J \\ 2 \ j (VBF) \\ 1-2 \ b, 1-0 \\ 1-2 \ b, 1-0 \\ 1 \ J \end{array}$	- Yes Yes Yes Yes Yes j Yes j Yes	139 36.1 36.1 139 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass W' mass W' mass Z' mass Z' mass W _R mass	340 GeV		5 2.42 TeV 2.1 TeV 4.1 Tr 5. 4.4 4.3 3.3 TeV 3.3 TeV 3.2 TeV 5.	.1 TeV eV 6.0 TeV 0.0 TeV TeV TeV 0.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_f = 0$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 ATLAS-CONF-2022-005 2207.00230 2207.00230 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	_ 2 e, μ 2 e 2μ ≥1 e,μ	2 j − 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ Λ			1.8 TeV 2.0 TeV 2.57 TeV		21.8 TeV η_{LL}^- 35.8 TeV η_{LL}^- $g_* = 1$ $g_* = 1$ $ C_{4t} = 4\pi$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
DM	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac DI Pseudo-scalar med. 2HDM+a	0 e, μ, τ, γ 0 e, μ, τ, γ M) 0 e, μ multi-channe	1 – 4 j 1 – 4 j 2 b	Yes Yes Yes	139 139 139 139	m _{med} m _{med} m _{med}	376 GeV 56	0 GeV	2.1 TeV 3.1 TeV		$\begin{array}{l} g_q\!=\!0.25,g_{\chi}\!=\!1,m(\chi)\!=\!1\;{\rm GeV}\\ g_q\!=\!1,g_{\chi}\!=\!1,m(\chi)\!=\!1\;{\rm GeV}\\ \tan\beta\!=\!1,g_{\chi}\!=\!0.8,m(\chi)\!=\!100\;{\rm GeV}\\ \tan\beta\!=\!1,g_{\chi}\!=\!1,m(\chi)\!=\!10\;{\rm GeV} \end{array}$	2102.10874 2102.10874 2108.13391 ATLAS-CONF-2021-036
ГØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$2 e 2 \mu 1 \tau 0 e, \mu \geq 2 e, \mu, \geq 1 \tau 0 e, \mu, \geq 1 \tau 1 \tau$	$ \begin{array}{c} \geq 2 j \\ \geq 2 j \\ 2 b \\ \geq 2 j, \geq 2 b \\ r \geq 1 j, \geq 1 b \\ 0 - 2 j, 2 b \\ 2 b \end{array} $	Yes Yes Yes Yes - Yes Yes	139 139 139 139 139 139 139	LQ mass LQ mass LQ ⁴ mass LQ ⁴ mass LQ ⁴ mass LQ ⁴ mass LQ ⁴ mass		1.2 1.24 1. 1.26	1.8 TeV 1.7 TeV TeV 43 TeV TeV 1.77 TeV		$\begin{split} \beta &= 1\\ \beta &= 1\\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^u \to t\nu) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^d \to t\nu) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^d \to b\nu) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^v \to b\tau) &= 0.5, \text{ Y-M coupl.} \end{split}$	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665
Vector-like fermions	$ \begin{array}{l} VLQ \ TT \to Zt + X \\ VLQ \ BB \to Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \to Wt + X \\ VLQ \ T \to Ht/Zt \\ VLQ \ T \to Ht/Zt \\ VLQ \ Y \to Wb \\ VLQ \ B \to Hb \\ VLL \ \tau' \to Z\tau/H\tau \end{array} $	$\begin{array}{c} 2e/2\mu/\geq 3e,\mu\\ \text{multi-channe}\\ 2(\text{SS})/\geq 3e,\mu\\ 1e,\mu\\ 1e,\mu\\ 0e,\mu\\ \text{multi-channe} \end{array}$	$\begin{array}{ll} \mu \geq 1 \ b, \geq 1 \ j \\ \mu \geq 1 \ b, \geq 1 \ j \\ \geq 1 \ b, \geq 1 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 1 \ j \\ \geq 2b, \geq 1j, \geq \\ \mu \geq 1 \ j \end{array}$	- Yes Yes IJ - Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass T _{5/3} mass T mass Y mass B mass τ' mass		1 1.3 898 GeV	.4 TeV 4 TeV 1.64 TeV 1.8 TeV 1.85 TeV 2.0 TeV		SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ SU(2) singlet, $\kappa_T = 0.5$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ SU(2) doublet, $\kappa_B = 0.3$ SU(2) doublet	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 ATLAS-CONF-2022-044
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton v^*	1γ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j –	- - - -	139 36.7 139 20.3 20.3	q* mass q* mass b* mass ℓ* mass ν* mass			3.2 TeV 3.0 TeV 1.6 TeV	6.7 TeV 5.3 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1910.0447 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles	$\begin{array}{c} 2,3,4 \ e, \mu \\ 2 \mu \\ 2,3,4 \ e, \mu \ (SS \\ 3,4 \ e, \mu, \tau \\ - \\ - \end{array}$	≥2 j 2 j 6) various 6) – –	Yes Yes 	139 36.1 139 139 20.3 139 34.4	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass H ^{±±} mass multi-charged parti monopole mass	350 GeV 400 GeV cle mass	910 GeV 1.08 Te	3.2 TeV V 1.59 TeV 2.37 TeV		$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell \tau) = 1 \\ \text{DY production}, q &= 5e \\ \text{DY production}, g &= 1g_D, \text{ spin } 1/2 \end{split}$	2202.02039 1809.11105 2101.11961 ATLAS-CONF-2022-010 1411.2921 ATLAS-CONF-2022-034 1905.10130
*0	$\sqrt{s} = 8 \text{ TeV}$	s = 13 TeV artial data	√s = 13 full d	ata		10 ⁻¹	I		1	1	⁰ Mass scale [TeV]	J

ICNFP 2023 July 2023

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

E. Torró

Motivation	Top-down Theory	IR LLP Scenario
Naturalness	RPV SUSY GMSB mini-split SUSY Stealth SUSY Axinos Sgoldstinos VV theory Neutral Naturalness Composite Higgs Relaxion	BSM=/→LLP (direct production of BSM state at LHC that is or decays to LLP) Hidden Valley confining sectors
Dark Matter	Asymmetric DM Freeze-In DM SIMP/ELDER Co-Decay Co-Annihilation Dynamical DM	ALP EFT SM+S EXT EFT EFT EFT EFT SM+S EXOTIC Z
Baryogenesis	WIMP Baryogenesis Exotic Baryon Oscillations Leptogenesis	decays exotic Higgs
Neutrino Masses	Minimal RH Neutrino with U(1) _{B-L} Z' with SU(2) _R W _R long-lived scalars with Higgs portal from ERS depends on production mode Discrete Symmetries	HNL exotic Hadron decays

Curtin et al, 1806.07396

New physics could have long lifetimes

Signatures in ATLAS and CMS not visible in standard searches!!

That depends on:

LLP lifetime

Standard HEP detector structure

That depends on:

LLP lifetime

LLP nature

object identification

- Is it charged?
 - Does it leave a standard track?
 - Is it highly ionising?
- Is it neutral?
 - which decay mode (hadronic, leptonic, photons, invisible)?

None of these signatures would be "seen" by a standard HEP search!

E. Torró ICNFP 2023 July 2023

That depends on:

LLP lifetime

LLP nature

object identification

- Standard triggers have no sensitivity to LLPs
- **Develop dedicated triggers**

trigger

• Trigger: combination of hardware + software that must decide very quickly whether to save an event or lose it forever

That depends on:

E. Torró **ICNFP 2023** July 2023

LLP lifetime

LLP nature

object identification

on in ATLAS

Latest results **Searches for LLPs**

E. Torró ICNFP 2023 July 2023

trigger

background rejection

Micro-displaced muons

- Search for pairs of opposite charge muons with O(mm) impact parameter
- GMSB SUSY with nearly massless gravitino LSP and long-lived slepton (τ, e, μ NLSP) due to small coupling to the LSP
- Di-muon trigger
- Very simple Signal Region selection: two muons with large transverse impact parameter $|d_0| > 0.6$ mm
- Dominant SM background: semileptonic *B*-hadron decays, $bb \rightarrow \mu \mu$
 - Data driven background ABCD method
- Other SM processes with prompt leptons are negligible. (Z/W+jets, tt, single top, di-boson)

ANA-SUSY-2020-09

Micro-displaced muons

- 15 Validation regions to test the ABCD method
 - General good agreement

E. Torró

- One region has a 2σ non-closure
 - Systematic uncertainty assigned in the signal region.

ICNFP 2023

July 2023

Excluded lifetimes down to 1 ps for m(~μ) ~ 100 GeV

ANA-SUSY-2020-09

No excess observed

Large-Radius Tracking

- Standard tracking in ATLAS optimized for particles pointing back to IP
 - tight requirements in number of silicon hits and impact parameter
 - would reject tracks from displaced decays

Large-Radius Tracking

- Standard tracking in ATLAS optimized for particles pointing back to IP
 - tight requirements in number of silicon hits and impact parameter
 - would reject tracks from displaced decays
- Large radius tracking (LRT)

- Relax requirements in number of hits and impact parameter
- Re-run with hits not associated with standard tracks

Large-Radius Tracking

- Standard tracking in ATLAS optimized for particles pointing back to IP
 - tight requirements in number of silicon hits and impact parameter
 - would reject tracks from displaced decays
- Large radius tracking (LRT)
 - Relax requirements in number of hits and impact parameter
 - Re-run with hits not associated with standard tracks
 - Improves reconstruction for displacements up to 300 mm
- LRT running at HLT trigger level in Run 3!!

<u>ATL-COM-DAQ-2022-023</u>

displaced electrons, muons and disappearing tracks in backup

Displaced vertices + jets

- Long-lived particles decaying into hadrons in the ATLAS inner detector
- SM (MSSM) *R*-parity-violating (RPV)
 - mean proper lifetimes τ up to O(10) ns
- Using LRT in events with multiple energetic jets and a displaced vertex
- Vertexing:
 - 1. two-track seed vertices, where at least one track with $|d_0| > 2$ mm
 - iteratively merged to form n-track vertices
 - 2. additional tracks with looser selection criteria are attached to the reconstructed vertices

requirement on two-track seed vertices must have $|d_0| > 2mm$

E. Torró

ICNFP 2023 July 2023

Displaced vertices + jets

- Three main sources of background:
 - hadronic interactions: detector material
 - accidental crossings: low-mass displaced vertices crossed by an unrelated track
 - merged vertices: close-by low-mass displaced vertices
- Reject them with DV selection:
 - DV at least 4 mm away from any collision vertex
 - DVs must satisfy a material map veto
 - DVs must have at least five tracks
 - *m*_{DV} > 10 GeV

E. Torró

Data-driven technique that predicts the rate of DVs from all three sources above

July 2023

Reach ~zero background analysis

ICNFP 2023

<u>SUSY-2018-13</u>

 Neutralinos with m=1.5TeV excluded with lifetimes in the range of 0.02 ns to 4 ns

Displaced jets

p			f	ATL-PHYS-PUB-202			
)- – – o		$- \overline{f}$ - f				
p .		Inner	\overline{f}		C		
		Tracker		Muon	out		
	IBL	Cal	orimeters	Spectrometer	de		
5 GeV	-			Prompt decay			
y), 139 fb ⁻¹				decay in Pixel			
Vtx), 36 fb⁻¹ 5 36 fb⁻¹ 13				decay in ID			
				decay in ECal			
pination				decay in HCal			
25-35 GeV Any				decay in MS	De st		

Neutral LLP, Traveled Distance

Charged LLPs Large dE/dx

- Pair production of different long-lived sparticles of charge |q| = 1
 - isolated tracks with high transverse momenta (pT) and anomalously large specific ionisation losses (dE/dx)
 - particles are expected to move significantly slower than the speed of light
 - Use MET triggers
 - Fully data-driven background estimation!

JHEP06(2023)158

Charged LLPs Large dE/dx

- Pair production of different long-lived sparticles of charge |q| = 1
 - isolated tracks with high transverse momenta (pT) and anomalously large specific ionisation losses (dE/dx)
 - particles are expected to move significantly slower than the speed of light
 - Use MET triggers
 - Fully data-driven background estimation!
 - **3.3** σ global excess!!
 - Is this New Physics???
 - Maybe, though... from TOF measurements: none of the candidate tracks are from charged particles moving significantly slower than the speed of light 😕

E. Torró **ICNFP 2023** July 2023

JHEP06(2023

 $\tilde{g}_{(\text{LLP})}$

 $g_{(LLP)}$

p

Multicharged particles

- Search for heavy long-lived multi-charged particles (MCP) with high ionization (higher electric charges and lower velocities)
 - range of electric charges from |q| = 2e to |q| = 7e
 - Ive long enough to traverse the entire ATLAS detector

- Triggers: Muon, MET, late-muon trigger
- Select high-*p*T muon-like tracks with high dE/dx values in several subdetector systems: pixel ID, TRT, MDT

19

Multicharged particles

- - in the same detector elements

Observed

95% CL limit

- • · z=2

- 🖷 · z=3 - 🛧 - z=4

- - - z=5

- ↔ · z=6

- ⊡ · z=7

1800

1600

20

Simulation

 $\sqrt{s} = 13 \text{ TeV}$

CONCLUSIONS

- LLPs might be the key for finding BSM physics
- LLPs are gaining interest!
- Great effort at the LHC experiments to search for LLPs...
 BUT! still some signatures to be exploited
- Development of new tools and strategies to improve identification of LLPs, pushing the detector beyond its original design capabilities
- Run 3 and HL-LHC offer a great opportunity to innovate and plan for new unconventional searches

Strong RPV: $\tilde{g} \to qq\tilde{\chi}^0 (\to qqq)$ $m(\tilde{g}) = 1.8 \text{ TeV}, m(\tilde{\chi}^0) = 200 \text{ GeV}, \tau = 0.1 \text{ ns}$

DV properties (x, y, z) : (26.9, 19.0, 51.4) mm mass : 107.1 GeV (14 tracks)

LRT at HLT trigger level

Multicharged particles

E. Torró

ICNFP 2023 July 2023

EXOT-2018-54

