

T2K Near Detector Upgrade

Yury Kudenko INR RAS (for the T2K Collaboration)

XII International Conference on New Frontiers in Physics 10-23 July 2023, OAC, Kolymbari, Crete, Greece

> 550 members76 institutionsfrom 14 countries

Long-Baseline Neutrino Oscillation Experiment

Experiment T2K

T2K collects data since 2010

T2K Results

Number of observed electron neutrinos in the beam of the muon neutrinos Oscillation parameters $\sin^2(\theta_{23})$ and Δm^2_{32} for normal mass hierarchy

T2K Run 1-9 **a** 0.034 — T2K + Reactors T2K Only 0.032 Reactor --- Tot. Pred., δ_{co}=- π/2 $\nu_{\mu} \rightarrow \nu_{e}, \delta_{CP}=0$ $(\theta_{13}^{0.03})$ 0.03 $(\theta_{13}^{0.028})$ 0.026 0.026 $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}, \delta_{CP}=0$ Tot. Pred., δ₋₋=+ Background Events 0.024 0.022 0.02 **b** 0.65 68.27% CL 99.73% CL 0.6 $(\theta_{23}^{0.52})^{-0.52}$ Events 0.45 0.4 С NO IC 0.4 0.6 0.8 0.2 -2 2 -3 0 1 3 -1 Reconstructed Energy (GeV) δ_{CP} T2K Run 1-10 Preliminary T2K Run 1-10 Preliminary 122 Reactor Constrain lormal ordering - T2K only 90% Constraint on θ_{13} T2K only 68% from reactor 90% Cl T2K only Best Fit experiments T2K+Reactor 90% Daya Bay, T2K+Reactor 68% T2K+Reactor Best Fit RENO, 0.04 0.01 0.02 0.03 0.05 0.06 0.07 -1 DChooz sin²0. Indication of maximal CP violation in neutrino oscillations $\delta_{CP} \sim -\pi/2$

Constraints on CP violating

parameter δ_{CP}

35% of δ_{CP} values excluded at 3σ marginalized over hierarchies CP conserving values ($\delta_{CP}=0,\ \pi$) excluded at >90%

Normal mass ordering is preferred at 80% CL

T2K Near Detector ND280

- Placed at 280 m from the target
- Measures the flux, flavor content, energy spectrum of the neutrino beam, studies neutrino-nucleus interactions

Electrons in SuperK:

- 4π acceptance

ND280

- Momentum threshold for protons
- 450 MeV/c (100 MeV kinetic energy);
- Non-CCQE interaction (2p2h, FSI) observed as CCQE;
- Acceptance for tracks in forward direction, SuperK 4π acceptance;
- Larger oscillation systematic uncertainties due to tracks not measured by TPCs
- No capability to detect neutrons

Motivation for ND280 upgrade

- Uncertainties of current T2K oscillation measurements are dominated by statistics
- However, systematics will limit T2K (and HyperK) sensitivity in future

Parameter	Current ND280 (%)	Upgrade ND280 (%)
SK flux normalisation	3.1	2.4
$(0.6 < E_{v} < 0.7 \text{ GeV})$		
MA_{QE} (GeV/c ²)	2.6	1.8
$ u_{\mu}$ 2p2h normalisation	9.5	5.9
2p2h shape on Carbon	15.6	9.4
MA_{RES} (GeV/ c^2)	1.8	1.2
Final State Interaction (π absorption)	6.5	3.4

Post-fit errors of the most significant systematic parameters

The systematic error can be reduced by about 30% in the ND280 upgrade configuration

- > Important to measure neutrino interactions in all phase space
- Precisely detect particles produced at any angle
- > Reduce detection threshold, measure protons with low threshold
- > Measure neutrons in anti- v_{μ} interactions
- > Reduce background, obtain better track identification using TOF
- Provide electron/gamma separation
- \blacktriangleright Reduce total systematics to $\leq 4\%$ level for appearance modes

ND280 upgrade

SuperFGD

- Volume ~192 x 184 x 56 cm³
- ~2 x 10⁶ scintillator cubes , each $1 \times 1 \times 1 \text{ cm}^3$
- Each cube has 3 orthogonal holes of 1.5 mm diameter
- 3D (x,y,z) WLS readout
- About 60000 readout WLS/MPPC channels
- Total active weight about 2 t

Fully active, highly granular, 4π scintillator neutrino detector with 3D WLS/MPPC readout

JINST 13 (2018) 02006

Cubes produced by injection molding Covered by chemical reflector Tolerance (each side) about 30 microns

Performance in beam tests (I)

JINST 15 (2020) 12, P12003

125 cubes

SFGD prototypes were tested:

- with charged particles beams (e, μ , π , p) at CERN
- with neutron beam at LANL

Parameters of the SFGD prototype obtained in the beam tests at CERN:

- Light yield of one cube 50-60 p.e./MIP, 1 fiber readout
- Light yield of one cube 150-180 p.e./MIP for sum of 3 orthogonal fibers
- Time resolution ~1 ns for MIP and 1 fiber readout
- Dark rate of MPPCs:
 - 50-70 kHz (th=0.5 p.e.), 0.5 kHz (th=1.5 p.e.)

SFGD prototypes

500 =

400

300

200

100

e+, B=0.2T

Performance in beam tests (II)

Neutron cross-section measurements at LANL with SuperFGD prototypes

10

PLB 840 (2023) 137843

High-Angle TPC

Standard Bulk MicroMegas

Resistive MicroMegas (RMM)

The field cage is a layer of solid insulator laminated on a composite material \rightarrow dead space minimized, tracking volume maximized

Parameter	Value
Overall $x \times y \times z$ (m)	$2.0 \times 0.8 \times 1.8$
Drift distance (cm)	90
Magnetic Field (T)	0.2
Electric field (V/cm)	275
Gas Ar-CF ₄ -iC ₄ H ₁₀ (%)	95 - 3 - 2
Drift Velocity $cm/\mu s$	7.8
Transverse diffusion ($\mu m/\sqrt{cm}$)	265
Micromegas gain	1000
Micromegas dim. z×y (mm)	340×410
Pad $z \times y$ (mm)	10×11
N pads	36864
el. noise (ENC)	800
S/N	100
Sampling frequency (MHz)	25
N time samples	511

Performance of HA-TPC

Yury Kudenko INR, Moscow

TOF Detector

TOF covers 2 HA-TPCs and SuperFGD

- 6 modules, each comprised of
- 20 plastic scintillator bars
- One bar: 220 x 12 x 1 cm3
- Both ends readout by 8 SiPMs on each end

Main Goals:

- Precise measurement of the crossing time of charged particles
- Separate inward going background
- Cosmic trigger for the calibration of Super-FGD and HA-TPCs
- Improvement of particle identification using timing

JINST 17 (2022) 01, P01016

Features of upgraded ND280

Current ND280 \Rightarrow Upgraded ND280

- SuperFGD and HA-TPC improve acceptance for high angle and backward tracks
- SuperFGD provides a high precision probe of the nuclear effects responsible for some of the dominant systematics in neutrino oscillation analyses → reduced systematics
- High granularity of SuperFGD \rightarrow detection of short proton tracks which is very important for T2K analysis
- SuperFGD provides reconstruction of the neutrino energy by time-of-flight
- TOF Detector separates background from outside SuperFGD and HA-TPC

Neutrino energy reconstruction

Muon neutrino CC0 π

$$\nu_{\mu}$$
+n $\rightarrow \mu^{-}$ +p

$$E_{\nu} = \frac{m_{p}^{2} - (m_{n} - E_{b})^{2} - m_{\mu}^{2} + 2(m_{n} - E_{b})E_{\mu}}{2(m_{n} - E_{b} - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Nuclei smearing and bias E_{ν}

S.Dolan, talk at HEP-EPS 2021

 Current ND280 uses only muons for reconstruction of the neutrino energy

- SuperFGD provides reconstruction of the neutrino energy by measuring both the muon and proton energies
- More precise *Ev* reconstruction, more sensitive to oscillation physics

from v_{μ} CC 1muon+1proton selection [oiu] events 1200 1000 v., CCQE (83.029 . 2p2h (8.21%) v., RES (7.07%) v., DIS (0.53%) v., COH (0.12%) v., NC (0.58%) đ ⊽.. (0.01%) Number 900 Number v_e / v_e (0.03%) OOFV (0.22%) Other (0.22%) Proton 400 distribution 200 0.2 0.4 0.6 1.2 1.4 p_{p,recon} [GeV/c] 0.8 õ

Proton momentum distribution

hitTimeFromSpill [2.5 ns

Anti-neutrino energy reconstruction

TZK

Muon antineutrino CCQE

$$\bar{\nu}_{\mu}$$
+p $\rightarrow \mu^{+}$ +n

Transverse kinematic imbalance

X.-G.Lu et al, arXiv:1512.05548

Transverse kinematic imbalance due to Fermi motion, FSI, 2p2h, pion absorption... For free proton $\delta p_T = 0$

Very low δp_T – signature of neutrino interaction with hydrogen

Improvement in reconstruction of $E_{\overline{\nu}}$ using detected neutron

ν_{e} constraints

Understanding of difference between $\sigma(v_e)$, $\sigma(\bar{v}_e)$, $\sigma(v_\mu)$, $\sigma(\bar{v}_\mu)$ - crucial for a search for **CP violation** in neutrino oscillations and measurements of **oscillation parameters**

Measurement of double ratio:

$[\sigma(v_{\mu})/\sigma(v_{e})] / [\sigma(\overline{v}_{\mu})/\sigma(\overline{v}_{e})]$

Status of ND280 upgrade

SuperFGD at J-PARC, electronics installation, calibration, tests with cosmic muons on surface

View of the second seco

Bottom TPC is assembled at CERN. To be delivered to J-PARC in August 2023

TOF detector at J-PARC. 2 modules installed into the Near Detector pit

The upgraded ND280 is to begin collecting neutrino data in November 2023

Conclusion

- Ambitious upgrade of T2K near detector ND280 is in progress
- Reduction of T2K systematic uncertainties crucial for CP-violation search and oscillation measurements
- Rich neutrino interaction physics
- Upgraded ND280 detector is to take neutrino data in November 2023

Thank you very much for your attention