XII International Conference on New Frontiers in Physics, Crete, Greece 10th -23rd July 2023

> Shalu Solomon on behalf of the ATLAS Collaboration

Measurements of processes sensitive to quartic electroweak couplings in ATLAS

Introduction

- Multiboson interactions serve as a stringent test of the Standard Model
- The non-Abelian nature of the electroweak theory allows for triple and quartic gauge interactions
- Diboson production via vector boson scattering (VBS) and triboson production are direct probes of tree-level quartic gauge couplings
- Test the Standard Model predictions for gauge boson self-interactions and electroweak symmetry breaking with the Higgs mechanism
- Study BSM effects by parametrizing any deviations from the Standard Model using the Effective Field Theory (EFT) such as anomalous triple/quartic gauge couplings

 $\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum$

$$\frac{c_i^{d=6}}{\Lambda^2} \mathcal{O}^{d=6} + \sum_i \frac{c_i^{d=8}}{\Lambda^4} \mathcal{O}^{d=8} + \dots$$

Introduction

Standard Model Production Cross Section Measurements

• Amongst the rarest processes studied at the LHC

• In the Standard Model, the interactions involve a pair of *W* bosons

Overview

Vector boson scattering

- Two electroweak gauge bosons produced but with a distinct signature of two jets with a large dijet invariant mass m_{jj} and angular separation Δy_{jj}
- Little hadronic activity in the rapidity gap (centrality)

Triboson production

 Three electroweak gauge bosons produced in the hard scatter

Recent results in ATLAS covered today Run 2 at ~140fb⁻¹

VBS:	W±W±jj	ZZjj	Z(II) _{Xjj}	Z(vv)yjj
Triboso	n: Zxx	Wyy	WZy	

4

 $t \longrightarrow 2(2v) + jets$

Golden channel of VBS

- No gg or qg initiating diagrams
- Largest electroweak to strong production ratio among other VV
- Final state with 2 same-sign leptons
- Small background rates due to the same-sign leptons in the final state

Cross-section measurement

- Dominant backgrounds from WZ and mis-identified leptons
- Signal extracted from a simultaneous maximum \bullet likelihood 2D fit in SR and 3 lepton WZ-QCD CR

electroweak

strong

- Differential cross-section measured for electroweak (shown) and inclusive production (backup)
- Likelihood based unfolding for correction to particle level
- Leading uncertainty from data statistics

W = W = (--+2)(2v) + jets

Search for doubly charged Higgs

- Results interpreted to search for $H^{\pm\pm}$ produced through vector boson fusion in the context of Georgi-Machacek model using $m_{H^{\pm\pm}}$ and $\sin\theta_H$ as model parameters
- Model independent upper limits at 95% CL on $\sigma(H^{\pm\pm}) \times B(H^{\pm\pm} \to W^{\pm}W^{\pm})$ extracted
- Largest excess observed for $m_{H_5^{\pm\pm}} = 450 \text{ GeV}$ at 2.5σ
- $\sin \theta_H > 0.11-0.41$ are excluded for 200 < $m_{H_5^{\pm\pm}} < 1500$ GeV

Search for aQGCs

- Results are interpreted within the EFT framework and limit set on 8 Dim-8 operators
- Limits on a given Wilson coefficient are derived by setting a others to zero. Constraints are consistent with zero
- Limits are also obtained by removing EFT contributions abore certain energy scale E_c that violates unitarity (clipping) and restricting $m_{WW} < E_c$. E_c is evaluated using boson kinematic parton level (before parton showering)

	Coefficient	Type	No unitarisation cut-off $[\text{TeV}^{-4}]$	Lower and upper limit at the respective unitarity b $[\text{TeV}^{-4}]$
	f_{M0}/Λ^4	exp.	[-3.9, 3.8]	-64 at 0.9 TeV, 40 at 1.0 TeV 140 at 0.7 TeV 117 at 0.8 TeV
ts are	$f_{\rm res}/\Lambda^4$	exp.	[-4.1, 4.1] [-6.3, 6.6]	-25.5 at 1.6 TeV, 31 at 1.5 TeV
		obs. exp.	[-6.8, 7.0] [-9.3, 8.8]	-45 at 1.4 TeV, 54 at 1.3 TeV -33 at 1.8 TeV. 29.1 at 1.8 TeV
11	f_{M7}/Λ^4	obs.	$\begin{bmatrix} -9.8, 9.5 \end{bmatrix}$	-39 at 1.7 TeV, 42 at 1.7 TeV
	f_{S02}/Λ^4	exp. obs.	[-5.5, 5.7] [-5.9, 5.9]	-94 at 0.8 TeV, 122 at 0.7 TeV -
	f_{S1}/Λ^4	exp. obs	[-22.0, 22.5] [-23.5, 23.6]	
ove a	f_{T0}/Λ^4	exp.	[-0.34, 0.34]	-3.2 at 1.2 TeV, 4.9 at 1.1 TeV 7.4 at 1.0 TeV 12.4 at 0.0 TeV
	f_{mi}/Λ^4	exp.	[-0.30, 0.30] [-0.158, 0.174]	-0.32 at 2.6 TeV, 0.44 at 2.4 TeV
cs at	J711/11	obs. exp.	[-0.174, 0.186] [-0.56, 0.70]	-0.38 at 2.5 TeV, 0.49 at 2.4 TeV -2.60 at 1.7 TeV, 10.3 at 1.2 TeV
	f_{T2}/Λ^4	obs.	[-0.63, 0.74]	_

sensitive to WWZ and **WWZZ** interactions

- Two l^+l^- pairs with the smallest $|m_{ll} m_Z|$
- $m_{4l} > 130 \text{ GeV}$
- Differential cross-section measurement for inclusive production in two SRs based on 4l centrality
 - VBS enhanced SR with $\zeta < 0.4$
 - VBS suppressed SR with $\zeta > 0.4$

$$\zeta = \frac{y_{4l} - 0.5(y_{j_1} + y_{j_2})}{\Delta y_{jj}}$$

- Measurements sensitive to ZZ-QCD signal modelling
 - MadGraph predictions for strong production underestimate the cross-section in both SRs
 - Mis-modelling in Sherpa at high m_{ii} in VBS suppressed SR

W W

ATLAS-CONF-2023-024

sensitive to perturbative QCD calculations

electroweak

strong

Wilson	$ \mathcal{M}_{\mathrm{d8}} ^2$	95% confidence interval [TeV ⁻⁴]		
coefficient	Included	Expected	Observed	
$f_{\mathrm{T},0}/\Lambda^4$	yes	[-0.98,0.93]	[-1.0,0.97]	
	no	[-23, 17]	[-19, 19]	
$f_{\mathrm{T},1}/\Lambda^4$	yes	[-1.2, 1.2]	[-1.3, 1.3]	
	no	[-160, 120]	[-140, 140]	
$f_{\mathrm{T,2}}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]	
	no	[-74, 56]	[-63, 62]	
$f_{\mathrm{T,5}}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]	
	no	[-79, 60]	[-68, 67]	
$f_{\mathrm{T,6}}/\Lambda^4$	yes	[-3.9, 3.9]	[-4.1, 4.1]	
	no	[-64, 48]	[-55, 54]	
$f_{\mathrm{T,7}}/\Lambda^4$	yes	[-8.5, 8.1]	[-8.8, 8.4]	
	no	[-260, 200]	[-220, 220]	
$f_{ m T,8}/\Lambda^4$	yes	[-2.1, 2.1]	[-2.2, 2.2]	
	no	[-4.6, 3.1]×10 ⁴	[-3.9, 3.8]×10 ⁴	
$f_{\mathrm{T,9}}/\Lambda^4$	yes	[-4.5, 4.5]	[-4.7, 4.7]	
	no	[-7.5, 5.5]×10 ⁴	[-6.4, 6.3]×10 ⁴	

- Results are shown when pure Dim-8 contribution is included and excluded in the theoretical predictions
- Wilson coefficients are consistent with zero

• A 2D fit of the differential cross-section as a function of m_{4l} and m_{ji} are used to set limits on Dim-6 and Dim-8 EFT operators

- Constraints are also placed after clipping: restricting the interference and pure Dim-8 contributions to have $m_{4l} < E_c$
- 95% CL intervals degrade by a factor of 4-5 when the energy scale cut off is reduced from $E_c = \infty$ to $E_c = 1$ TeV

First observation in ATLAS

- Probes neutral quartic gauge couplings but has a larger cross-section than ZZ
- Dominant background from $Z\gamma$ -QCD and non-prompt photons (jets misidentified as photons) from *Z*+jets

 $\frac{d\sigma}{dm_{jj}}$ [fb × GeV⁻¹]

<u>Prediction</u> Data

• FSR suppressed with $m_{ll} + m_{ll\gamma} > 182 \text{ GeV}$

Differential cross-section extracted from a maximum likelihood fit in SR and CR

σ	Observed	Expected
Ζγ-EWK	3.6±0.5 fb	3.5±0.3 fb
Ζγ	$16.8^{+2.0}_{-1.8}$ fb	$15.7^{+5.0}_{-2.6}$ fb

arXiv.2305.19142 (Submitted to PLB)

	Data stat.	MC stat.	Background	Reco	EW mod.	QCD mod.
$\Delta \sigma_{EW} / \sigma_{EW}$ [%]	± 9	± 1	± 1	± 4	$^{+8}_{-6}$	± 2
$\Delta \sigma_{Z\gamma} / \sigma_{Z\gamma}$ [%]	± 3	± 1	± 2	$+4 \\ -3$	+7 -6	± 9

- Probes neutral quartic gauge couplings but larger BR for $Z \to \nu \bar{\nu}$ than $Z \to l^+ l^-$
- Final state with an energetic photon $E_T^{\gamma} > 150$ GeV and large $E_T^{\text{miss}} > 120$ GeV
- Dominant backgrounds from $W\gamma$ and $Z\gamma$ -QCD
- Signal extracted from a binned maximum likelihood fit using a BDT classifier response in the SR and m_{ii} in Z γ -QCD and $W\gamma$ CRs

• Measured cross-section in agreement with SM predictions

$$\sigma_{fid} = 0.77^{+0.34}_{-0.30}$$
 fb **Observed with 3.20 (3.70 expected)**

JHEP 06 (2023) 082

Combination with a previous ATLAS measurement: **Observed with 6.30** \bullet

Combination increases the overall sensitivity to electroweak Zy+jets

- Limits set on EFT Dim-8 operators.
- EFT contributions are suppressed above E_c . Parton level simulated events are scanned (before parton showering) and events with $m_{ll\gamma\gamma} > E_c$ are suppressed.
- Constraints are significantly stronger than any previous LHC results on neutral aQGCs.

).18
).27
).13

First observation at the LHC (rejecting FSR)

- A Z candidate and two photons with at least $\Delta R = 0.4$
- FSR contributions suppressed
- Dominant background is non-prompt photons. Background estimated from data. Largest source of systematic uncertainty
- Results consistent with SM predictions

Not allowed in SM

 ZZ_{XX} , Z_{XXX} and X_{XXX} interactions possible via aQGCs

- Limits set on 8 Wilson coefficients of Dim-8 EFT operators.
- Constraints on 4 of the operators are two orders of magnitude more restrictive than the previous ATLAS result using 8 TeV
- Results are also obtained with clipping technique applied (backup)

Limited accuracy in QCP modelling in the presence of jets

- [-9.88,9.34]
- [-20.31,18.68]
- [-15.55,15.04]

- $Z\gamma$ veto with $m_{l\gamma\gamma}, m_{l\gamma_1}, m_{l\gamma_2} \notin [82,100]$ GeV
- b-jet veto to suppress top backgrounds
- \bullet
- region with ≥ 1 b-jet.

• Measured cross-section in agreement with SM predictions

 $\sigma_{fid} = 12.2^{+2.1}_{-2.0}$ fb

Observed with 5.60 (5.60 expected)

Leading uncertainty source is the data-driven background estimates

ATLAS-CONF-2023-005

• A W boson candidate with $m_{T,W} > 40$ GeV and $E_T^{\text{miss}} > 25$ GeV

• Major background from non-prompt $(j \rightarrow \gamma)$ and fake photons $(e \rightarrow \gamma)$. Data-driven estimates Signal obtained from a binned maximum likelihood fit.

• Top background constrained in ≥ 1 b-jet CR simultaneously with SR. Validated in low E_T^{miss}

- Selections applied on p_T^l, p_T^{γ} , and E_T^{miss}
- Z candidate with m_{ll} closest to m_Z
- $m_{ll} > 81 \text{ GeV suppresses FSR}$
- $|m_{e,\gamma} m_Z| > 10 \text{ GeV to reduce } e \to \gamma$

- Dominant background is non-prompt leptons and photons
- Signal extracted from a maximum likelihood fit in SR and $ZZ\gamma$ CR and $ZZ(e \rightarrow \gamma)$ CR
- ZZy and ZZ normalizations obtained from the CRs
- Leading uncertainty is limited data statistics
- Systematic uncertainty dominated by statistical uncertainty in non-prompt background estimation

arXiv.2305.16994 (Submitted to PRL)

• Measured cross-section agrees with SM predictions within 1.5σ

 $\sigma_{fid} = 2.01 \pm 0.34 \text{ fb}$ jia Observed with 6.3σ (5.0 σ expected)

- to stringently test SM predictions

- Many exciting first observations in ATLAS!
- All results are compatible with SM predictions so far
- Results are interpreted in the context of EFT and limits are set on Dim-6 and Dim-8 operators
- LHC will continue to test SM with better sensitivities to new physics in Run 3 and beyond!

• Multiboson interactions with tree level sensitivity to quartic gauge couplings serve as a powerful tool

• Probes extreme phase spaces which became experimentally accessible for the first time in LHC Run 2 • Most of these processes have been observed in Run 2 with some already in the measurement phase

$\pm(--+2|2v) \pm jets$

Electroweak production

Inclusive production

Variable	$\begin{bmatrix} EW W^{\pm}W^{\pm}jj \end{bmatrix}$		Inclusive $W^{\pm}W^{\pm}jj$		
	$\chi^2/N_{\rm dof}$	<i>p</i> -value	$\chi^2/N_{ m dof}$	<i>p</i> -value	
$m_{\ell\ell}$	4.4/6	0.623	7.0/6	0.322	
$m_{ m T}$	12.9/6	0.045	15.9/6	0.014	
$m_{ m ii}$	7.2/6	0.300	7.8/6	0.250	
$N_{ m gap~jets}$	2.3/2	0.316	2.3/2	0.316	
ξ_{j_3}	4.3/5	0.511	5.2/5	0.396	

ATLAS-CONF-2023-023

- Differential cross-section measured for electroweak and inclusive production
- Likelihood based unfolding for correction to particle level \bullet
- Leading uncertainty from data statistics \bullet

Source	Impact $[\%]$
Experimental	
Electron calibration	0.4
Muon calibration	0.5
Jet energy scale and resolution	1.8
$E_{\rm T}^{\rm miss}$ scale and resolution	0.2
<i>b</i> -tagging inefficiency	0.7
Background, misid. leptons	3.1
Background, charge misrec.	0.8
Pileup modelling	0.2
Luminosity	1.9
Modelling	
EW $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.8
$EW W^{\pm}W^{\pm}jj$, QCD corrections	3.5
EW $W^{\pm}W^{\pm}jj$, EW corrections	0.8
Int $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	0.1
QCD $W^{\pm}W^{\pm}jj$, shower, scale, PDF & α_s	2.3
QCD $W^{\pm}W^{\pm}jj$, QCD corrections	0.9
Background, WZ scale, PDF & α_s	0.2
Background, WZ reweighting	1.7
Background, other	1.0
Model statistical	1.8
Experimental and modelling	6.7
Data statistical	7.4
Total	10.0

sensitive to WWZ and WWZZ interactions

sensitive to perturbative QCP calculations

electroweak

strong

VBS suppressed

$$\zeta = \frac{y_{4l} - 0.5(y_{j_1} + y_{j_2})}{\Delta y_{jj}}$$

0

arXiv.2305.19142 (Submitted to PLB)

ts

- Dominant backgrounds from $W\gamma$ and QCD induced $Z\gamma$
- Signal obtained from a binned maximum likelihood fit of CR and SR

$\mu_{Z\gamma_{ m EW}}$	$\beta_{Z\gamma_{\rm strong}}$	$eta_{W\gamma}$
1.03 ± 0.25	1.02 ± 0.41	1.01 ± 0.20

Eur. Phys. J. C

ISR

FSR

FSR

 Z/γ^*

 $m_{ll} + \min(m_{ll\gamma 1}, m_{ll\gamma 2}) > 2m_Z$

Source	Relative uncertainty [%	
	$e^+e^-\gamma\gamma$	$\mu^+\mu^-\gamma\gamma$
Photon identification efficiency	2.5	2.6
Photon isolation efficiency	2.0	2.0
Electron-photon energy resolution	0.2	0.1
Electron-photon energy scale	0.8	0.6
Electron identification efficiency	2.0	-
Electron reconstruction efficiency	0.3	-
Muon isolation efficiency	-	0.4
Muon reconstruction efficiency	-	0.4
Muon trigger efficiency	-	0.3
Muon momentum scale	-	0.2
Pile-up reweighting	2.8	2.9
Monte Carlo signal statistics	1.1	1.0
Signal modelling	1.1	1.1
Integrated luminosity	1.7	1.7
$j \rightarrow \gamma$ backgrounds	7.5	7.6
Other backgrounds	1.7	1.9
Total systematic uncertainty	8.6	7.5
Data statistical uncertainty	11.5	10.9
Total uncertainty	14.5	13.3

 ℓ^+

 E_c [TeV]

 ν

ATLAS-CONF-2023-005

Source	SR	TopCR
$W\gamma\gamma$	410 ± 60	28 ± 5
Non-prompt $j \to \gamma$	420 ± 50	42 ± 20
Misidentified $e \to \gamma$	155 ± 11	120 ± 9
Multiboson $(WH(\gamma\gamma), WW\gamma, Z\gamma\gamma)$	76 ± 13	5.2 ± 1.7
Non-prompt $j \to \ell$	35 ± 10	—
Top $(tt\gamma, tW\gamma, tq\gamma)$	30 ± 7	136 ± 32
Pileup	10 ± 5	—
Total	1136 ± 34	332 ± 18
Data	1136	333

Source of uncertainty	Impact [%]
Data-driven background estimates	13
Photon efficiency	4.5
Signal MC theoretical modeling	3.5
Background MC theoretical modeling	3.0
Monte Carlo statistics	2.8
Jet efficiency and calibration	2.4
Top normalization	2.4
Pileup reweighting	1.6
$E_{\rm T}^{\rm miss}$ calibration	1.4
Muon efficiency and calibration	1.4
Luminosity	1.0
Electron and photon calibration	0.7
Flavor tagging efficiency	0.6
Systematic	15
Statistical	8.3
Total	17

arXiv.2305.16994 (Submitted to PRL)

