

Study of the processes of electron-positron annihilation into hadron states with SND at VEPP-2000 collider

Dmitry A. Shtol On behalf of SND collaboration

Budker Institute of Nuclear Physics Novosibirsk, Russia

12 July 2023

XII International Conference on New Frontiers in Physics, Crete, Greece

SND experiment at VEPP-2000

Integrated luminosity is measured

• $e^+e^- \rightarrow yy$ for neutral final states

• $e^+e^- \rightarrow e^+e^-$ for charged final

using:

states

Spherical Neutral Detector

1 – beam pipe, 2 – tracking system, 3 – aerogel cherenkov counter, 4 – NaI(Tl) crystals, 5 – phototriodes, 6 – iron absorber, 7–9 – muon detector, 10 – focusing solenoids.

Total IL=885 pb⁻¹ for June, 2023 Until 2021 — 300 pb⁻¹ 2022 and 2023 — 585 pb⁻¹ (not processed yet)

SND physics program

The physics program of experiments at VEPP-2000 includes the following main topics:

- •Measurement of total hadronic cross section below 2 GeV for calculation HVP contribution to $(g-2)_{\mu}$.
- Study of dynamics of hadron production, i.e. separation between different intermediate states, for example, ωη, φη, etc.
- Hadron spectroscopy: study of light-vector-meson excitations.
- •Search for rare and forbidden decays of the ρ , ω , and ϕ mesons.
- Study of nucleon-antinucleon pair production, extraction of the proton and neutron electromagnetic form factors.
- •Search for production of C-even resonances: $e^+e^- \rightarrow \eta$, η' , f_1 , f_2 , a_2 , etc.
- Using the radiative return technique as alternative method for measurement of hadronic cross sections.

$e^+e^- \to \pi^+\pi^-\pi^0$

Fraction of $\rho\pi$ and $\rho'\pi$ measured by fit of Dalitz-plot $(M_{\pi\pm\pi0})^2$ vs $(M_{\pi\pm\pi0})^2$, using model

$$\frac{d\sigma}{d\Gamma} = \left| \alpha A_{\rho\pi} + \beta A_{\rho'\pi} + \gamma A_{\omega\pi} \right|^2$$

Where $|\gamma|$ was fixed using $\omega \pi^0$ data, parameters of fit are $|\alpha|$, $|\beta|$ and two phases $\varphi_{\rho\pi-\omega\pi}$, $\varphi_{\rho\pi-\rho'\pi}$

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$

$$\sigma_{\rm vis}(E) = \frac{N_{\rm exp}}{\varepsilon L} \qquad \sigma_{\rm born}(E) = \frac{N_{\rm exp}}{\varepsilon L(1+\delta)}$$

$$\sigma_{\rm vis}(E) = \int_{0}^{\epsilon} F(x, E) \ \sigma_{\rm born} \left(E \sqrt{1-x} \right) dx$$

Systematics error estimate 7.3%

Model includes mechanisms: $e^+e^- \rightarrow (\omega, \phi, \omega', \omega'') \rightarrow \rho\pi \rightarrow \pi^+\pi^-\pi^0$ $e^+e^- \rightarrow (\phi, \omega', \omega'') \rightarrow \rho'\pi \rightarrow \pi^+\pi^-\pi^0$

 $M(\omega') = 1190 \pm (45/38) \qquad (1450 \pm 60)$ $\Gamma(\omega') = 380 \pm (42/31)$ (450 ± 300) $M(\omega'') = 1640.7 \pm (7.1/7.8) (1670 \pm 150)$ $\Gamma(\omega'') = 159 \pm (15/14)$ (300 ± 200) Phases for $\rho\pi$: $\phi_{\omega\omega'} = 176^{\circ} \pm (12/14)$ $\phi_{\omega\omega''} = -40^{\circ} \pm (15/18)$ Phases for $\rho'\pi$: $\phi_{\omega\omega'} = 173^{\circ} \pm (11/14)$ $\phi_{\omega\omega''} = 30^{\circ} \pm (15/19)$ Phase for $\rho\pi$ is measured relatively to ω , for $\rho'\pi$ - relatively φ . Input of $\rho' \pi$ on ϕ mass taken from KLOE data and was fixed $\sigma (\phi \rightarrow \rho' \pi) = 47 \pm 14 \qquad (40 \pm 15)$

$e^+e^- \to \omega\pi^0 \to \pi^+\pi^-\pi^0\pi^0$

- Events are selected using kinematic reconstruction in $\pi^+\pi^-\pi^0\pi^0$ hypothesys
- For background processes subtraction a distribution of $M_{\pi+\pi-\pi_0}$ is used
- Subtraction of beam and cosmic background was done using Z₀ distribution (only when calculating efficiency corrections)

 $e^+e^- \to \omega\pi^0 \to \pi^+\pi^-\pi^0\pi^0$

E, GeV	syst. error
1.0 — 1.5	3.0 — 4.0 %
1.5 — 2.0	4.0 — 14.3 %

$e^+e^- \rightarrow \eta\eta\gamma$

- $\chi^{2}_{\eta\eta\gamma}-\chi^{2}_{5\gamma}$ fit is used for event number calculation
- Effect is described by MC in $e^+e^- \rightarrow (\varphi \eta, \rho \eta, \omega \eta) \rightarrow \eta \eta \gamma$ model
- Background by MC of π⁰π⁰γ, ηπ⁰γ, π⁰π⁰π⁰γ, ηπ⁰π⁰γ, QED 4γ (with fake photons), 5γ
- Data with suppressed $\varphi\eta$ events are described by background processes no significant mechanism other then $\varphi\eta$, $\rho\eta$, $\omega\eta$.

- Solid curve ηρ cross section
 - Dotted curve $\eta\rho+\omega\rho$ cross section
 - Dashed curve $\eta \phi + \eta \rho + \omega \rho$ cross section

Published in Eur. Phys. J. C (2022) 82:168

E, GeV	syst. error
<1.32	21 %
1.32 — 1.57	23 %
>1.57	12

$$\begin{split} \mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \mathbf{ny} \\ \sigma_{\eta\gamma}(\sqrt{s}) &= \left(\frac{k_{\gamma}(\sqrt{s})}{\sqrt{s}}\right)^{3} \left|\sum_{V=\rho, \ \omega, \ \phi, \dots} A_{V}(\sqrt{s})\right|^{2} \\ A_{V}(\sqrt{s}) &= \frac{m_{V}\Gamma_{V}(m_{V})e^{i\varphi_{V}}}{D_{V}(\sqrt{s})} \sqrt{\frac{m_{V}^{3}}{k_{\gamma}(m_{V})^{3}}\sigma_{V\eta\gamma}} \\ D_{V}(\sqrt{s}) &= m_{V}^{2} - s - i\sqrt{s}\Gamma_{V}(\sqrt{s}) \\ k_{\gamma}(\sqrt{s}) &= \frac{\sqrt{s}}{2} \left(1 - \frac{m_{\eta}^{2}}{s}\right) \end{split}$$

$$\begin{aligned} \mathbf{D}_{S}(\omega) &= -\frac{1}{200} \frac{1}{100} \frac{1}{10} \frac{1}{1$$

 $\sigma_{
ho'\eta\gamma} = 16^{+15}_{-10} \pm 2 \ {\rm pb}$

Dashed curve — only ρ , ω , ϕ Solide curve includes aslo ρ' and ϕ' .

 $\sigma_{\phi'\eta\gamma} = 14^{+14}_{-10} \pm 2 \text{ pb}$

Quark model prediction¹ is $\sigma_{\rho'\eta\gamma} \approx 15~{\rm pb}$, $\sigma_{\phi'\eta\gamma} \approx 10~{\rm pb}$

Published in arXiv:2306.12734

10

¹ F. E. Close, A. Donnachie and Y. S. Kalashnikova, Phys. Rev. D 65, 092003 (2002).

 $e^+e^- \to K^+K^-\pi^0$

- 1. $\rho(1450)$ and $\rho(1700)$ with masses fixed on PDG values (solid line, $\chi 2/ndf=50/28$).
- 2. Fixed $\rho(1700)$ and free resonance (dashed line), gives M=1585±15 MeV and Γ =75±30 MeV for free
 - resonance, $\chi^2/ndf=38/26$. Such vector resonance is not known

 $e^+e^- \rightarrow \phi \pi^0 \rightarrow K^+K^-\pi^0$ (m_{rec}^{YY}<1.11 GeV/c²)

Published in Physics of Atomic Nuclei, 2021, Vol. 84, No. 1, pp. 59–62.

M_{ρ} , MeV	775.3±0.5±0.6	
Γ_{ρ} , MeV	145.6±0.6±0.8	
$\phi_{\rho\omega}$, deg	110.7±1.1±1.0	
$B_{\rho \to e^+e^-}B_{\rho \to \pi^+\pi^-}$	(4.889±0.015±0.039)10 ⁻⁵	
$B_{\omega \to e^+e^-}B_{\omega \to \pi^+\pi^-}$	(1.318±0.051±0.021)10 ⁻⁶	

E, MeV	syst. error
525 — 600	0.9 — 1.2 %
600 — 883	0.8 %

Published in JHEP01(2021)113

 $e^+e^- \rightarrow nn$

Total cross
section:
$$\sigma(e^+e^- \to B\overline{B}) = \frac{4\pi\alpha^2\beta C}{3m^2} \left(|G_M|^2 + \frac{2m_B^2}{m^2} |G_E|^2 \right)$$

Effective form $|F|^2 = \frac{|G_M|^2 + |G_E|^2/2\tau}{1+1/2\tau}, \quad \tau = \frac{m^2}{4m_B^2}$ m²=s Two measurable values:
factor $1 - \text{effective FF},$
At threshold : $s = 4m_B^2 \to |G_E| = |G_M| = |F|$
Asymptotic prediction: $F_n = -F_p/2$ $2 - G_E/G_M$ C=1 for neutrons

 $e^+e^- \rightarrow pp$

$e^+e^- \rightarrow \eta\pi^+\pi^-\pi^0\pi^0$

16

Summary

In experiment SND at VEPP2000 the following processes are studied:

```
\begin{array}{l} \bullet e^+e^- \rightarrow \pi^+\pi^-\pi^0 \\ \bullet e^+e^- \rightarrow \omega\pi^0 \rightarrow \pi^+\pi^-\pi^0\pi^0 \\ \bullet e^+e^- \rightarrow \eta\eta\gamma \\ \bullet e^+e^- \rightarrow \eta\gamma \\ \bullet e^+e^- \rightarrow K^+K^-\pi^0 \\ \bullet e^+e^- \rightarrow \pi^+\pi^- \\ \bullet e^+e^- \rightarrow \eta\overline{n} \\ \bullet e^+e^- \rightarrow \eta\overline{n} \\ \bullet e^+e^- \rightarrow \eta\overline{n} \\ \bullet e^+e^- \rightarrow \eta\pi^+\pi^-\pi^0\pi^0 \end{array}
```

 For the most of the processes cross sections are compatible with the previous but has better accuracy

 This results are using statistics of VEPP-2000 until 2021 (including), IL=300 pb⁻¹.

•Results using 2022 and 2023 statistics are coming soon, IL=585 pb⁻¹.

BACKUP

$e^+e^- \to \pi^+\pi^-\pi^0$

Model includes mechanisms: $e^+e^- \rightarrow (\omega, \phi, \omega', \omega'') \rightarrow \rho\pi \rightarrow \pi^+\pi^-\pi^0$ $e^+e^- \rightarrow (\phi, \omega', \omega'') \rightarrow \rho'\pi \rightarrow \pi^+\pi^-\pi^0$ $M(\omega') = 1190 \pm (45/38)$ (1450 ± 60) $\Gamma(\omega') = 380 \pm (42/31)$ (450 ± 300) $\sigma (\omega' \rightarrow \rho \pi) = 6.62 \pm (0.48/0.70) \text{ nb}$ $\sigma (\omega' \rightarrow \rho' \pi) = 0.068 \pm (0.018/0.016) \text{ nb}$ $M(\omega'') = 1640.7 \pm (7.1/7.8) (1670 \pm 150)$ $\Gamma(\omega'') = 159 \pm (15/14)$ (300 ± 200) $\sigma (\omega'' \rightarrow \rho \pi) = 0.126 \pm (0.052/0.040)$ $\sigma (\omega'' \rightarrow \rho' \pi) = 1.31 \pm (0.15/0.14)$ Фазы: для рπ: $\varphi_{\omega\omega'} = 176^{\circ} \pm (12/14)$ $\phi_{\omega\omega''} = -40^{\circ} \pm (15/18)$ Фаза для ρ'π: $\phi_{000'} = 173^{\circ} \pm (11/14)$ $\phi_{\omega\omega''} = 30^{\circ} \pm (15/19)$ Phase for $\rho\pi$ is measured relatively to ω , for $\rho'\pi$ - relatively ϕ . Input of $\rho' \pi$ on ϕ mass taken from KLOE data and was fixed $\sigma (\phi \rightarrow \rho' \pi) = 47 \pm 14$ (40 ± 15)

$e^+e^- \to \omega\pi^0 \to \pi^+\pi^-\pi^0\pi^0$

$$\sigma_{\text{born}}(E) = \frac{4\pi\alpha^2}{E^3} \left| F_{\gamma\omega\pi}(E) \right|^2 P_f(E)$$