Vacuum Decay and New Instantons

V. F. Mukhanov^a, E. Rabinovici^b, <u>A. S. Sorin^c</u>

^a Ludwig Maximillian University, Munich
 ^b Hebrew University, Jerusalem
 ^c LTP & LHEP JINR, Dubna

Based on the papers: *JHEP* 07 (2022) 147, <u>2206.13994</u> [hep-th] *Phys.Lett.* B827 (2022) 136951, <u>2111.13928</u> [hep-th] JCAP 10 (2021) 049, <u>2105.01996</u> [hep-th] JCAP 10 (2021) 066, <u>2104.12661</u> [hep-th] Fortsch. Phys. 69 (2021) 2, 2000100, <u>2009.12445</u> [hep-th] Fortsch. Phys. 69 (2021) 2, 2000101, <u>2009.12444</u> [hep-th]

XII International Conference on New Frontiers in Physics (ICNFP 2023) OAC, Crete, 10 July 2023

"Find the beginning of everything, and you will understand much."

Kozma Prutkov

Bubbles in Metastable Vacuum

I. Yu. Kobzarev, L. B. Okun, M. B. Voloshin

Sov.J.Nucl.Phys. 20 (1975) 644-646, *Yad.Fiz.* 20 (1974) 1229-1234 <u>428 citations</u> (iNSPIRE hep)

The Fate of the False Vacuum. 1. Semiclassical Theory Sidney R. Coleman Phys.Rev.D 15 (1977) 2929-2936, Phys.Rev.D 16 (1977) 1248 (erratum) 2364 citations (iNSPIRE hep)

The Fate of the False Vacuum. 2. First Quantum Corrections Curtis G. Callan, Jr., Sidney R. Coleman Phys.Rev.D 16 (1977) 1762-1768 1526 citations (iNSPIRE hep)

Action Minima Among Solutions to a Class of Euclidean Scalar Field Equations Sidney R. Coleman, V. Glaser, Andre Martin Commun.Math.Phys. 58 (1978) 211-221 311 citations (iNSPIRE hep)

Citations iNSPIRE hep January 11, 2023 Gravitational Effects on and of Vacuum Decay Sidney R. Coleman and Frank De Luccia *Phys.Rev.D* 21 (1980) 3305 1610 citations (iNSPIRE hep)

Citations iNSPIRE hep January 11, 2023

φ=φ_f V_f=0

φ=φ_f V_f=0

φ=φ_f V_f=0

Heuristic approach

$n \sim \sigma^4 / |V_t|^3 >> 1$

$$P \sim \exp(-a \sigma^4 / |V_t|^3) <<1$$

 \mathbf{V}_{V}

V_b

Vt

 $|V_b \gg |V_t|$

 ϕ_{f}

φ

 ϕ_{f}

In the thin-wall approximation:

$$a = 27 \pi/2$$

I.Yu. Kobzarev, L.B. Okun, M.B. Voloshin Sov.J.Nucl.Phys. 20 (1975) 644-646, Yad.Fiz. 20 (1974) 1229-1234

The false vacuum decay rate: $\Gamma \simeq arrho_0^{-4} \exp\left(-S_E
ight)$

O(4)-invariant solution φ depends only on $\rho = \sqrt{\tau^2 + x^2}$.

$$S_{E} = 2\pi^{2} \int_{0}^{+\infty} d\varrho \,\varrho^{3} \left(\frac{1}{2}\dot{\varphi}^{2} + V(\varphi)\right)$$
$$\ddot{\varphi}(\varrho) + \frac{3}{\varrho}\dot{\varphi}(\varrho) - V' = 0 \quad \text{with boundary conditions:} \quad \begin{aligned} \varphi(\varrho \to \infty) &= \varphi_{f} \\ \dot{\varphi}(\varrho = 0) &= 0 \end{aligned}$$

The two puzzles with the Coleman instanton

1. The too fast false vacuum decay

V.F. Mukhanov, E. Rabinovici, and A.S.S., Fortsch. Phys. 69 (2021) 2, 2000100 [arXiv:2009.12445]

2. There is no Coleman instanton at all

V.F. Mukhanov, E. Rabinovici and A.S.S., Fortsch. Phys. 69 (2021) 2, 2000101 [arXiv:2009.12444]

$$V(\varphi) = \begin{cases} \lambda_{-} \varphi_{0}^{3} \varphi + \frac{\lambda_{+}}{4} \varphi_{0}^{4} & \text{for } \varphi < 0, \\ \frac{\lambda_{+}}{4} (\varphi - \varphi_{0})^{4} & \text{for } \varphi > 0. \end{cases}$$

 $V(\varphi) = \begin{cases} \frac{\lambda_{+}}{4} (\varphi - \varphi_{0})^{4} & \text{for } \varphi > \beta \varphi_{0} \\ -\frac{\lambda_{-}}{4} (\varphi^{4} - \beta^{3} \varphi_{0}^{4}) & \text{for } \varphi < \beta \varphi_{0}, \end{cases}$

 $\lambda_{-} \gg 1$ (zero size instanton problem) $\varrho_0 << 1$, $S_E << 1$, $\Gamma >> 1$ The quasiclassical approximation is not trustable! $\beta = \frac{\lambda_+^{1/3}}{\lambda_+^{1/3} + \lambda_-^{1/3}} \,,$

The nonlocal integrals of motion

$$\begin{split} E\left(\alpha\right) &= \varrho^{\frac{4}{\alpha-2}} \left(\frac{1}{2}\varrho^{2}\dot{\varphi}^{2} + \frac{2}{\alpha-2}\varrho\,\varphi\,\dot{\varphi} - \varrho^{2}V - \frac{2\left(\alpha-4\right)}{\left(\alpha-2\right)^{2}}\varphi^{2}\right) \\ &+ \frac{2}{\alpha-2} \int_{0}^{\varrho} d\overline{\varrho}\,\overline{\varrho}^{\frac{6-\alpha}{\alpha-2}} \left[\left(\alpha-4\right)\left(\overline{\varrho}\,\dot{\varphi} + \frac{2}{\alpha-2}\varphi\right)^{2} + \overline{\varrho}^{2}\left(\alpha V - \varphi\,V'\right)\right], \end{split}$$

V.F. Mukhanov and A.S.S., *Phys.Lett.* B827 (2022) 136951, <u>2111.13928</u> [hep-th]

$$\frac{dE}{d\varrho} = \varrho^{\frac{\alpha+2}{\alpha-2}} \left(\ddot{\varphi}(\varrho) + \frac{3}{\varrho} \, \dot{\varphi}(\varrho) - V' \right) \left(\varrho \, \dot{\varphi} + \frac{2}{\alpha-2} \varphi \right)$$

Theorem 1. (S.R. Coleman, V. Glaser, A. Martin, Commun. Math. Phys. 58 (1978) 211-221)

The Coleman instanton exists in D-dimensions, if for the continuous differentiable potential V (ϕ) with a local minimum at ϕ = 0 there exist positive numbers a, b, α and β , such that

 $\beta < \alpha < 2D/(D-2)$ $V(\varphi) \ge a |\varphi|^{\beta} - b |\varphi|^{\alpha}$

Theorem 2. (V.F. Mukhanov and A.S.S., *Phys.Lett.* B827 (2022) 136951, <u>2111.13928</u> [hep-th])

010

If potential V (ϕ) has a maximum at ϕ = 0 and has no any local minima at positive ϕ (unbounded from below) and satisfies the inequality

$$V(\varphi) < a |\varphi|^{\beta} - b |\varphi|^{\alpha}$$

then the Coleman instanton, which is supposed to describe the decay of the false vacuum at the absolute local minimum at $\phi_f < 0$, does not exist regardless of the form of the potential at negative ϕ .

There exists a broader class of unbounded potentials for which the instantons with the Coleman boundary conditions do not exist: for any unbounded potential, which for positive φ can be represented as

$$V(arphi) = -arphi^{lpha} \int^{arphi} dar{arphi} \, v'_{lpha} \, (ar{arphi}) \,, \qquad \qquad lpha \ge rac{2\,D}{D-2}, \qquad \qquad v'_{lpha} \ge 0,$$

the Coleman instanton does not describe the decay of the deepest false vacuum at $\varphi_f < 0$ regardless of the form of the potential for negative values of φ .

The Coleman instantons do not exist: examples of the potentials

$$V(\varphi) = -\varphi^{\alpha} \int^{\varphi} d\bar{\varphi} \, v'_{\alpha} \left(\bar{\varphi}\right), \quad v'_{\alpha} = a \, \varphi^{-\alpha} \prod_{i=1}^{\alpha-2(m+1)} (\varphi - \lambda_i) \prod_{j=1}^{m} \left((\varphi + \beta_j)^2 + \gamma_j^2 \right), \text{ where } a > 0, \, \gamma_j, \lambda_i \le 0$$

V.F. Mukhanov and A.S.S., JCAP 10 (2021) 066, [arXiv:2104.12661]

The resolution of the Coleman instanton puzzles: quantum fluctuations

 ϱ_{uv} and ϱ_{ir} are two different solutions of the equation: $\dot{\varphi}_{I}(\varrho) \simeq \frac{\sigma}{\varrho^{2}}$

New instantons with a quantum core

$$\ddot{arphi} + rac{D-1}{arrho} \dot{arphi} - V' = 0,$$
 $\begin{array}{c} arphi \left(arrho
ightarrow \infty
ight) = arphi_f \,, \ \dot{arphi} \left(arrho = arrho_b
ight) = 0 \,, \quad arrho_b \, ext{is an arbitrary new free parameter} \end{array}$

$$\begin{aligned} |\dot{\varphi}_{\rm uv}| &= \frac{\sigma \left(D-2\right)}{2} \, \varrho_{\rm uv}^{-\frac{D}{2}} , \quad |\dot{\varphi}_{\rm ir}| = \frac{\sigma \left(D-2\right)}{2} \, \varrho_{\rm ir}^{-\frac{D}{2}} \\ S_I &= \frac{2 \pi^{\frac{D}{2}}}{\Gamma \left(\frac{D}{2}\right)} \left(\int_{\varrho_{uv}}^{\varrho_{ir}} d\varrho \, \varrho^{D-1} \left(\frac{1}{2} \, \dot{\varphi}^2 + V(\varphi)\right) + \frac{\varrho_{uv}^D}{D} V_{uv} \right) \end{aligned}$$

The false vacuum decay rate: $\Gamma \simeq arrho_0^{-D} \exp{(-S_I)}, \quad \Psi(\ref{s}) = 0$

With the precision allowed by the uncertainty relation $arrho_{
m uv} \, \mathcal{V} \simeq O(1)\,$ the potential energy

$$\mathcal{V} = \frac{2\pi^{\frac{D-1}{2}}}{\Gamma\left(\frac{D-1}{2}\right)} \left(\int_{\varrho_{uv}}^{\varrho_{ir}} d\varrho \, \varrho^{D-2} \left(\frac{1}{2} \, \dot{\varphi}^2 \, + \, V(\varphi) \right) + \frac{\varrho_{uv}^{D-1}}{D-1} \, V_{uv} \right) \,,$$

vanishes and the bubble with the quantum core emerges from under the barrier.

The friction dominated new instantons

$$\ddot{\varphi} + \frac{D-1}{\varrho} \, \dot{\varphi} \simeq 0$$

$$\varphi(\varrho) = \varphi_f + \frac{E}{(D-2)^2 |\varphi_f| \, \varrho^{D-2}} \qquad \Rightarrow \qquad \varrho(\varphi) = \left(\frac{E}{(D-2)^2 |\varphi_f| \, (\varphi - \varphi_f)}\right)^{\frac{1}{D-2}}$$

E is the parameter, which can be expressed in terms of ϱ_b and vice versa.

$$V_{\rm fr}(\varphi) \equiv \frac{D-1}{\varrho} |\dot{\varphi}| \equiv -\frac{1}{2} \left(D-2 \right)^{\frac{2D}{D-2}} \left(\frac{|\varphi_f|}{E} \right)^{\frac{2}{D-2}} \left(\varphi - \varphi_f \right)^{\frac{2(D-1)}{D-2}} \leq 0$$

$$\ddot{\varphi} + \frac{D-1}{\varrho} \dot{\varphi} \simeq 0 \qquad \Rightarrow \qquad \frac{1}{2} \dot{\varphi}(\varrho)^2 + V_{\rm fr}(\varphi) = 0.$$

$$\begin{split} \ddot{\varphi} + \frac{D-1}{\varrho} \, \dot{\varphi} - V' &= 0 \ \Rightarrow \ \ddot{\varphi} + U'_{\text{eff}}(\varphi) = 0 \,, \quad \Rightarrow \quad \frac{1}{2} \, \dot{\varphi}^2 + U_{\text{eff}} = 0 \\ \\ U_{\text{eff}} &= V_{\text{fr}} - V \end{split}$$

The value of the scalar field at which its velocity vanishes satisftes: $U_{
m eff}(arphi)=0 \rightarrow V_b \equiv V(arphi_b) \simeq V_{
m fr}(arphi_b)$

If we assume that $\dot{\varphi}$ at the location of the maximum of the potential $V(\varphi = 0) = V_{\text{bar}}$ is determined by the friction term, then

$$|V_{\rm fr}(\varphi=0)| \gg V_{\rm bar}, \qquad \rightarrow \qquad 1 \ll E \ll (D-2)^D |\varphi_f|^D \ (2V_{\rm bar})^{\frac{2-D}{2}}$$
$$|V_{\rm fr}(\varphi_b)| \ge |V_{\rm fr}(0)| \qquad \rightarrow \qquad |V_b| \gg V_{\rm bar}$$

Thus, the tunnelling depth is much larger than the height of the potential barrier, which corresponds to the thickwall instantons. The friction dominated new instantons: the thick-wall approximation

$$S_{\mathbf{l}} = \frac{\alpha \pi^{\frac{D}{2}} E\left(\varphi_b - \varphi_f\right)}{\Gamma\left(\frac{D+2}{2}\right) \left(D-2\right) \left|\varphi_f\right|} = \frac{\alpha \left(D-2\right)^{D-1} \pi^{\frac{D}{2}}}{\Gamma\left(\frac{D+2}{2}\right)} \frac{\left(\varphi_b + \left|\varphi_f\right|\right)^D}{\left|2V_b\right|^{\frac{D-2}{2}}},$$

$$\varrho_0 = \left(\frac{E}{(D-2)^2 \,\varphi_f^2}\right)^{\frac{1}{D-2}} = \frac{(D-2)}{\sqrt{|2V_b|}} \left(1 + \frac{\varphi_b}{|\varphi_f|}\right)^{\frac{D-1}{D-2}} |\varphi_f|$$

$$V\left(\varphi_b\right) = V_{\mathrm{fr}}\left(\varphi_b\right)$$

$$V(\varphi_b^{\max}) \simeq -\frac{1}{2} (D-2)^{\frac{2D}{D-2}} \left(1 + \frac{\varphi_b^{\max}}{|\varphi_f|}\right)^{\frac{2(D-1)}{D-2}} |\varphi_f|^{\frac{2D}{D-2}}$$

The condition under which the thick-wall approximation is applicable:

$$\left(1 + \frac{\varphi_b}{|\varphi_f|}\right)^{\frac{2(D-1)}{D-2}} V_{\text{bar}} \ll |V_b| \ll \frac{1}{2} \left(D-2\right)^{\frac{2D}{D-2}} \left(1 + \frac{\varphi_b}{|\varphi_f|}\right)^{\frac{2(D-1)}{D-2}} |\varphi_f|^{\frac{2D}{D-2}}$$

Example for D=4

Conclusions

The Coleman boundary condition $\dot{\varphi}(\varrho = 0) = 0$ for O(4) instantons must be abandoned due to quantum fluctuations which induce UV-cutoff determined by the instanton parameters.

This cutoff regularizes the original singular solutions, thus there is an infinite class of new nonsingular instantons with a quantum core which contribute to a false vacuum decay.

For potentials unbounded from below or having a true vacuum with a depth exceeding the barrier height, the new instantons, which provide the tunneling, are dominated by the friction term in the instanton equation and the corresponding true-vacuum bubbles have thick walls.

Then, one can replace the non-autonomous instanton equation by the autonomous completely solvable equation, which is a good approximation for the original one, and there exist the general formulae for the falsevacuum decay rate for arbitrary potentials in any number of dimensions.

Thank you for attention!