ATLAS Physics Prospects for HL-LHC

Alkaid Cheng (University of Wisconsin-Madison) on behalf of the ATLAS collaboration

ICNFP 2023 (July 10-23, 2023)

Alkaid Cheng

ICNFP 2023

ICNFP 2023 (July 10-23, 2023) 1/25

→ ∃ →

- ▶ Run 3 just starting: ~2x ATLAS and CMS datasets by 2025
- ▶ Major boost in statistics expected with HL-LHC data-taking from 2029:
 - 5 7.5x nominal instantaneous luminosity
 - Up to 3000 fb $^{-1}$ integrated luminosity, Run 1 3 \sim 10% of total HL-LHC dataset

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Challenges from pile-up

- ► High luminosity + pile-up conditions are particularly challenging for data-taking:
 - Detector irradiation
 - Higher occupancy
 - Higher trigger rates
- Require improvements for experiments in all areas:
 - Detectors themselves
 - Trigger menu and hardware
 - Object reconstruction
 - Software and computing
 - Physics analysis techniques

ICNFP 2023

ICNFP 2023 (July 10-23, 2023) 4/25

3

<ロト < 回 > < 回 > < 回 > .

How do we extrapolate results to HL-LHC?

Start from:

- Published LHC Run 2 results, or
- Simulations (usually using a simplified detector simulation such as DELPHES)
- Adapt to HL-LHC conditions:
 - Center-of-mass energy: 13 TeV → 14 TeV (affect cross-section of various processes)
 - Pile-up: $30 \rightarrow 200$
 - Larger dataset: 140 fb $^{-1} \rightarrow$ 3000 fb $^{-1}$
 - Simulated detector and reconstruction performance
 - Theory and experimental uncertainties: usually present a few scenarios

Elizabeth Brost Higgs @10 Symposium

ICNFP 2023

Systematic Uncertainties

- Projections of systematic uncertainties rely on significant assumptions
- Common treatments:

•

Detector and trigger performance comparable to Run 2

- New detectors and reconstruction algorithms expected to counteract pile-up effects
- Most experimental uncertainties expected to decrease
 - Clever use of larger datasets and new detectors
 - 1% goal for luminosity uncertainty
- Theory uncertainties reduced by factor of 2
 - Improvements expected in perturbative corrections, PDFs, α_S
- Statistical uncertainties scaled by 1/\sqrt{L}
- Uncertainties on methods such as non-statistical uncertainties on data-driven techniques kept the same
- · Uncertainties due to statistics of available MC simulation set to 0
- Systematics driven by intrinsic detector limitations left unchanged

э

ATL-PHYS-PUB-2021-023

Flavor tagging

ITk upgrade performance - tracking

- ► Tracking efficiency for 10 GeV muons without pile-up compatible with Run 2
- ▶ Transverse impact parameter d₀ resolution for 100 GeV muons improved by a factor 2
- Longitudinal impact parameter z₀ resolution for 100 GeV muons improved by a factor 4 respectively
- ► Transverse momentum resolution expected to outperform the Run 2 resolution

ICNFP 2023

・ロト ・ 同ト ・ ヨト ・ ヨ

- Access flavor tagging performance using the most up-to-date simulation of the upgraded Inner Tracker (ITk)
- ► Algorithms trained and evaluated with $t\bar{t}$ and Z' MC samples at $\sqrt{s} = 14 \text{ TeV}$

- DIPS: Based on deep sets ATL-PHYS-PUB-2020-014
- DL1d: Based on deep neural network Eur. Phys. J. C 79 (2019) 970
- GN1: Based on graph neural network ATL-PHYS-PUB-2022-027 The auxiliary track classification and vertex finding objectives contribute significantly to the performance of the jet classification

ICNFP 2023

- ► Significant improvement in b-jet tagging efficiency for the new taggers w.r.t. MV2c10 (used for previous upgrade studies)
- At 70% btag WP, the GN1 tagger shows more than factor of 2 improvement in the $t\bar{t}$ sample

• Results for the Z' sample can be found in the Appendix

Alkair	1 Cheng
Airai	a Grieriy

Higgs physics

Measurement of $H \to \tau \tau$ cross-section

ATL-PHYS-PUB-2022-003

- ▶ Total $H \rightarrow \tau \tau$ cross-section
 - $H \rightarrow \tau \tau$ cross-section measured with 5% precision at HL-LHC
 - Dominated by theoretical uncertainties on the signal prediction
- Production cross-section
 - ggF and VBF: dominated by theory uncertainties on the signal prediction
 - VH: similar contributions from exp. uncertainties and stat. uncertainties
 - ttH: dominated by exp. uncertainties

▶ STXS measurements studied with Run 2 categories

Cross-section precision from 7% to 50%

ICNFP 2023

Higgs physics

Higgs couplings to SM particles

- Higgs couplings move into precision regime
- $H \rightarrow \mu\mu$ and $H \rightarrow Z\gamma$ measurements still limited by size of the collected dataset
- Other couplings dominated by theoretical uncertainties (despite assumed /2 improvement)

Higgs couplings to charm, bottom

- VH, $H \to c \bar{c}$ channel combined with VH, $H \to b \bar{b}$
- Direct measurement within reach at HL-LHC: constraint on charm quark modifier of $|\kappa_c| < 3$ and ratio with the bottom quark modifier of $|\kappa_c/\kappa_b| < 2.7$

ATL-PHYS-PUB-2021-039

ATI -PHYS-PUB-2022-018

Higgs pair production and self-coupling

- The Higgs self-coupling (coupling modifier κ_λ) is one of the Higgs boson properties that is still largely unconstrained. Its value determines the shape of the Higgs potential.
- ► The Higgs self-coupling can be directly accessed through Higgs pair (HH) production
 - SM HH production is an **extremely rare process** with cross-section 1000x smaller than single Higgs production. Only ~4000 events expected in Run 2.
 - Finding evidence for HH production is feasible at the HL-LHC, ~100,000 events expected

Higgs pair production and self-coupling

Combination of HH searches $b\bar{b}b\bar{b} + b\bar{b}\tau\tau + b\bar{b}\gamma\gamma$

ATL-PHYS-PUB-2022-053

- Discovery significance of 3.4 σ
- ▶ 95% CL upper limit on SM HH signal strength at 0.55
- κ_{λ} constrained within [0.0, 2.5] at 95% CL (possibility of excluding $\kappa_{\lambda} = 0$)

Sensitivity of $b\bar{b}b\bar{b}$ channel driven by **btag performance** (potential improvement from ITk)

Alkaid Cheng

ICNFP 2023

ICNFP 2023 (July 10-23, 2023) 13/25

Measurement of the W mass

ATL-PHYS-PUB-2018-026

- $\blacktriangleright~$ W mass measurement at low μ will benefit from
 - Extended tracking coverage: uncertainty reduced by 25%
 - Improved PDF precision: PDF systematics halved
 - Larger dataset: 200 pb $^{-1}$ per week at $\langle \mu \rangle = 2$
- ▶ With 200 pb⁻¹, precision of 8.6 (stat) + 3.7 (PDF syst) = 9.3 MeV
- As comparison, precision from latest CDF result is 9.4 MeV

Alkaid Cheng

ICNFP 2023

ICNFP 2023 (July 10-23, 2023) 14/25

Top physics

Measurement of $t\bar{t}t\bar{t}$ cross section

ATL-PHYS-PUB-2022-004

Two systematic scenarios:

- Run 2 (pessimistic): same as Run 2 values
- Run 2 improved (optimistic): scaled according to HL-LHC expectations
- ▶ In the Run 2 improved scenario:
 - Expected SM signal significance of 6.4 σ (up from 2 σ in Run 2)
 - Cross-section measurement uncertainty of 14% (down from 50% in Run 2)
 - Improvement mainly driven by
 - Smaller uncertainty on the $t\bar{t}t$ cross-section
 - Smaller uncertainties related to ttV + jets with heavy-flavor jets and jet flavor tagging

ICNFP 2023

QCD physics

Measurements of differential jet and photon

ATL-PHYS-PUB-2018-051

- ► Significant increase in reach of differential QCD measurements at the HL-LHC:
 - Single-jet p_T 3.5 \rightarrow 5 TeV
 - Dijet m_{jj} 9 \rightarrow 11.5 TeV
 - γ +jet $E_T(\gamma)$, $p_T(\text{jet})$ 1.5 \rightarrow 3.5 TeV, $m(\gamma$ +jet) 3.3 \rightarrow 7 TeV
- Large differences between various PDF predictions at high pT
 - Strong impact of HL-LHC measurements improve determination of proton PDFs

Electroweak physics

Measurement of the electroweak mixing angle

ATL-PHYS-PUB-2018-037

- ▶ Precision measurement of $\sin^2 \theta_{\text{eff}}$ using forward-backward asymmetry in Drell-Yan dilepton event
- ► Benefits from improved forward lepton reconstruction + statistics
- Better precision than individual LEP-1 and SLD measurements (3σ discrepancy)

3

BSM physics

Search for lepton-flavor violating decays $H \to e \tau$ and $H \to \mu \tau$

ATL-PHYS-PUB-2022-054

Two background estimation methods

- MC template method: dominated by systematics (jet E_T^{miss} , fake bkg estimate)
- Symmetry method: $\tau_\ell \ell$ channels only, dominated by stat. unc. on data-driven bkg prediction

Results from MC template method:

- Expected 95% CL upper limits on \mathcal{B} for $H \to e\tau(\mu\tau)$ are 0.024% (0.024%)
- Improvement w.r.t. Run2 results of a factor 4.8 (3.9) for $H \rightarrow e\tau(\mu\tau)$ searches.

MC template method

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

BSM resonance searches

Heavy Z'/W' search

ATL-PHYS-PUB-2018-044

- Many BSM models predict heavy resonances manifesting as bump in tail of mass spectrum: heavy gauge bosons, excited leptons, Majorana neutrinos...
- Leptonic channels typically exhibit best sensitivity: often rely on dedicated lepton reco. / identification
- HL-LHC will increase reach of searches to weaker couplings and higher masses

Model	Run 2 exclusion [TeV]	HL-LHC exclusion [TeV]	
Right-handed W'	3.15	4.9	
Sequential Standard Model W'	5.6	7.9	
Right-handed Z'	5.4	5.8	
Sequential Standard Model Z'	6.1	6.5	

ICNFP 2023 (July 10-23, 2023) 19/25

SUSY searches

Electroweak SUSY searches (staus, charginos and neutralinos) ATL-PHYS-PUB-2018-048

- ► The 95% CL expected exclusion potentials at the HL-LHC reach **200 GeV higher** in mass than the discovery potentials
- Larger benefit from HL dataset due to smaller cross-sections

Searches for dark photons decaying to displaced muons

ATL-PHYS-PUB-2019-002

- ► Search for neutral long-lived particles decaying to pairs of muons
- Standard algorithms tailored for reconstruction of prompt particles but new algorithms developed during Run 2-3 can be successfully adapted for HL-LHC detectors
- Phase-2 upgrades (muon timing detector, muon triggers) also opportunities to exploit new capabilities for trigger and reconstruction

- ► Search for associated production of DM with SM detectable particles (e.g. mono-X, X=Z/H/top): look for excess in tail of MET or m_T distributions
 - DM search in mono-top final states ATL-PHYS-PUB-2018-024
- Sizeable improvements w.r.t. Run 2 possible thanks to increased dataset + improved systematics: complementary to direct detection experiments

► HL-LHC data-taking represents an **unprecedented challenge** and requires improvements to:

- Trigger menu and hardware
- Event reconstruction
- Software and computing
- Physics analysis techniques
- Hard work and creativity in reconstruction and analysis techniques already evident since last round of projections
- ► Extremely rich and exciting physics programs ahead:
 - Higgs physics: precise determination of Higgs properties, probing of small Higgs couplings
 - Standard Model: ultimate precision measurement of fundamental SM parameters
 - Beyond Standard Model: direct improvement in mass reach for many models, new analysis techniques can help close gaps in unexplored regions of phase space
 - Flavor physics + Heavy-ion physics

3

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Backup - The ATLAS Inner Tracker

- ► The current Inner Detector (ID) will be replaced with a new all-silicon Inner Tracker (ITk)
 - Made of a Pixel Detector surrounded by a Strip Detector
 - Recently updated layout includes reducing the radius of the innermost pixel layer motivated by the expected improvement in tracking performance
 - Also improved **high-level object reconstruction and identification**, including primary vertices, jet flavor-tagging, electrons, and converted photons

B-jet tagging efficiency for new taggers w.r.t. MV2c10 (used for previous upgrade studies)

Z' sample

			~		
All	kai	a	(:r	ien	a
			<u> </u>		9

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ATL-PHYS-PUB-2022-047