

XII International Conference on New Frontiers in Physics 10-23 July 2023, OAC, Kolymbari, Crete, Greece

Effect of nuclear structure on particle production in heavy-ion collisions using AMPT model

<u>Priyanshi Sinha</u>¹, Vipul Bairathi², Krishan Gopal¹, Chitrasen Jena¹, Sonia Kabana²

¹Indian Institute of Science Education and Research (IISER) Tirupati ²Instituto de Alta Investigación, Universidad de Tarapacá

arXiv:2305.13950 [hep-ph]

Motivation

- * Isobars, ${}^{96}_{44}$ Ru and ${}^{96}_{40}$ Zr, have the same nucleon number
 - \rightarrow Similar initial geometry and dynamical evolution
 - \rightarrow Produces a medium with same properties
- Isobar collisions performed at RHIC-STAR experiment in the year 2018
- Collective flow and charged particle multiplicity different between the two isobar species
- Different nuclear structure impacting the initial state and final state particle production

M. S. Abdallah et al. (STAR Collaboration), Phys. Rev. C 105, 14901 (2022)

Bing-Nan Lu et. al., Phys. Scr. **89**, 054028 (2014) P A Butler and W Nazarewicz, Rev. Mod. Phys. **68**, 349-421 (1996)

Priyanshi Sinha

3

Nucleon density distributions described by deformed Woods-Saxon (WS) form

Study of deformation effects is needed to understand properties of partonic matter

 \rightarrow bridging low energy nuclear physics to high energy collisions

 $\beta_{\lambda\mu} = 0$

 $\beta_{20} > 0$ $\beta_{20} < 0$ $\beta_{30} \neq 0$ $\beta_{20} > 0$ $\beta_{20} < 0$ $\beta_{30} \neq 0$ Deformatio
order λ [2,

Deformation parameters, $\beta_{\lambda\mu}$ of order λ [2, ∞), μ [$-\lambda$, $+\lambda$]

dN_{ch}/dղ (|ղ|<0.5) IC 0-5% HIC 20-30% IC 20-30% PHENIX data Partons freeze-out BRAHMS data ICE data (d) dN/dy150 (e) p_T (f) v_{2} (EP Hadronization (Quark Coalescence) 0.6 (GeV/c) 100 **Extended ART (Hadron Cascade)** 50 ۸ Q 0.55 Hadrons freeze-out **Final Particle Spectra** 1.5 2 6 Λ 0.5 0 0.5 1.5 0.5 20 40 60 80 100 p_T (GeV/c) p_{T} (GeV/c) Centrality (%) Zi-Wei Lin et. al., Phys. Rev. C 72, 064901 (2005) Zi-Wei Lin and Liang Zheng, Nucl. Sci. Tech. 32, 113 (2021)

(a) dN/dy

π

AMPT model

Spectator Nucleons

HIJING

Excited Strings

Minijet Partons

ZPC (Parton Cascade)

A+B

Generate parton space-time

Xe+Xe 5.44ATe

Au+Au 200AGeV

Cu+Cu 200AGeV

o+Pb 5.02ATeV

10

(c) $v_{2}{EP}$

(b) p_T

- A multi-phase transport model (AMPT) used extensively to study relativistic heavy-ion collisions
- ◆ Used AMPT string melting model version 2.26t9 with partonic cross-section of 3mb

900

600

300

AMPT model

- Different parameterization of Woods-Saxon distribution in AMPT model used to study multiplicity and $v_{2,3}$ for charged hadrons in Ru+Ru and Zr+Zr collisions
- Studies using parameterization as $\beta_{2,Ru} > \beta_{2,Zr} \& \beta_{3,Ru} < \beta_{3,Zr}$ **

Priyanshi Sinha

Ru/Z

300

 $N_{track}(|\eta| < 0.5)$

Priyanshi Sinha

✤ Three different cases of isobar nuclear structure studied

β₃

0

0.2

0.0

0.0

✤ Nuclei involving difference in size and structure describes the isobar data from STAR better

Zi-Wei Lin et. al., Phys. Rev. C 72, 064901 (2005)

 β_2

0.162

G. Giacalone et. al., Phys. Rev. Lett. 127, 242301 (2021) 6

β₃

0

0.0

0.0

 β_2

0.162

0.060

0.500

0.556

a

0.46

0.52

Analysis

5.067

4.965

Ro

5.09

5.09

Rυ

Zr

Rυ

Zr

Case-3

Ro

6.380

Aυ

Case-1

U	R _o	a	β ₂	β ₃
Case-1	7.115	0.54	0.0	0.0
Case-2	6.810	0.550	0.28	0.0

a

0.535

Effect of nuclear deformation

Transverse momentum spectra

(c1)

2

2

p_ (GeV/c)

(c3)

p_{_} (GeV/c)

AMPT-SM

0

 $\sqrt{s_{NN}} = 200 \text{ GeV}$

Transverse momentum dependence shows a systematic centrality dependence for identified

hadrons

 \clubsuit Hardening of p_T spectra towards central

10

2πp_{_}d*p*_d*y*) (GeV/*c*)⁻²

|y| < 0.5

(a1)

Case - 1

 K^+

(b1)

AMPT-SM

 $\sqrt{s_{NN}} = 200 \text{ GeV}$

Particle yield

- ✤ More significant deviation in the ratio of particle yields which could be attributed to the inclusion of deformation along with different nuclear sizes
 - Clear centrality dependence
 - Deviation up to 5% in peripheral collisions

Average transverse momentum

* No significant difference in $\langle p_T \rangle$ between isobar nuclei having the same nuclear size

✤ Deviation from unity within 1% in nuclei with different nuclear sizes and deformations

- Deviation increasing with particle mass
 - Increased radial flow in central collisions

Particle ratios

- ✤ In same system: cancellation of effects of nuclear geometry
- ↔ Higher π^{-}/π^{+} ratio in Zr+Zr collisions compared to Ru+Ru → higher d/u ratio in the Zr nucleus
- ↔ Higher \overline{p}/p ratio in Zr+Zr compared to Ru+Ru collisions → lower number of protons in Zr nucleus
- ✤ Kaon production dominated by pair production

Effect of nuclear size

Yield

* Increase in dN/dy with increasing $\langle N_{ch} \rangle$ for all the particle species

* Particle yields for different colliding systems show a smooth variation

Mean p_T

- $\langle p_T \rangle$ increases with increasing particle mass
 - \rightarrow stronger radial flow
- * Shows a smooth variation with $\langle N_{ch} \rangle$
- Pions and kaons show a weak centrality dependence than protons

Conclusion

- ✤ Predictions of the transverse momentum spectra for pions, kaons, and protons in Ru+Ru and Zr+Zr collisions at $\sqrt{s_{NN}} = 200$ GeV using AMPT model
- ✤ Effect of nuclear deformation
 - Difference in dN/dy and $\langle p_T \rangle$ due to a different nuclear size and deformation for the two isobars
 - Centrality dependence in yield ratios between isobar collisions
 - Antiparticle to particle ratio between the two isobars for pions and protons indicates isospin effect; ratio for kaons indicates dominance of pair production

✤ Effect of nuclear size

 \blacksquare dN/dy and $\langle p_T \rangle$ varies smoothly with multiplicity for all collision systems

Thank you for your attention!

Back-up

Transverse momentum spectra

Priyanshi Sinha