

Elliptic flow of inclusive charged hadrons in relativistic heavy-ion collisions using the PHSD model

Vipul Bairathi¹, Sonia Kabana¹

¹Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile

Waseem Bhat², Towseef Bhat², Shabir Bhat², Farooq Mir² ²University of Kashmir, Srinagar, Jammu and Kashmir, India

XII International Conference on New Frontiers in Physics 10-23 July 2023, OAC, Kolymbari, Crete, Greece

Introduction: Collective Flow

Different flow harmonics

P. Klob, U. W. Heinz, Nucl. Phys. A715, (2003) 653c

Elliptic flow (v₂)

Momentum space anisotropy in the azimuthal angle distribution of produced particles with respect to the reaction plane.

- Sensitive to initial conditions of collisions
- Sensitive to transport properties (η/s) of system
- Probe for the particle production mechanism (e.g. quark coalescence)

Single particle distribution:

$$E\frac{d^{3}N}{dp^{3}} = E\frac{d^{2}N}{2\pi p_{T}dp_{T}d\eta} \bigg[1 + 2 \sum_{n=1}^{\infty} v_{n}(p_{T},\eta) \cos\left\{n(\phi - \Psi_{n})\right\} \bigg]$$

anisotropic flow $v_n = \langle \cos [n(\phi - \Psi_n)] \rangle$, $\Psi_n = n^{\text{th}}$ -order reaction plane angle

η-sub event plane method

$$\begin{split} \Psi_n = &\frac{1}{n} \tan^{-1} \left(\frac{\sum_{i=1}^M w_i \sin\left(n\phi_i\right)}{\sum_{i=1}^M w_i \cos\left(n\phi_i\right)} \right) \\ &R_n = \sqrt{\left\langle \cos\left[n(\Psi_n^A - \Psi_n^B)\right] \right\rangle} \end{split}$$

Event plane angle calculated in two sub-events A ($0.05 < \eta < 1.0$) and B ($-1.0 < \eta < -0.05$).

$$R_{full} \approx \sqrt{2} R_{\eta sub}$$

• A.M. Poskanzer & S.A. Voloshin, Phys.Rev. C 58 (1998)

• L. Adamczyk et al. (STAR), Phys. Rev. C 88, 014902 (2013)

Results: Charged Hadrons Elliptic Flow

- Elliptic flow <v₂> increases from central to peripheral collisions showing strong centrality depdendence.
- $\langle v_2 \rangle$ with respect to $\psi_2 \{\eta$ -sub} in Au+Au collisions at $E_{lab} = 35$ A and 25 A GeV from the PHSD model show similar centrality dependence as in Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV from the STAR experiment.
 - L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 86, 054908 (2012)

Differential v₂(p_T)

• Elliptic flow $v_2(p_T)$ increases monotonically with transverse momentum (p_T) till 2.0 GeV/c.

- $v_2(p_T)$ in Au+Au collisions from the PHSD model shows similar trend as in the Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV from the STAR experiment.
- The difference between $v_2(p_T)$ at $E_{lab} = 35$ and 25 A GeV from the PHSD model is ~10% at lower p_T .
 - L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 86, 054908 (2012)

Eccentricity Scaling

- Elliptic flow $v_2(p_T)$ scaled by participant eccentricity ε_2 increases from pheripheral to central collisions indicating more collectivity in central Au+Au collisions at $E_{lab} = 35$ and 25 A GeV from the PHSD model
- A similar trend as in the Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV from the STAR experiment.
- L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 86, 054908 (2012)

Pseudorapidity dependence

■ Elliptic flow $v_2(\eta)$ in Au+Au collisions at $E_{lab} = 35$ and 25 A GeV from the PHSD model shows similar trend as in the Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV from the STAR experiment.

L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 86, 054908 (2012)

Summary

- Inclusive hadron elliptic flow v_2 at mid-rapidity measured using eta-sub event plane method is presented for Au+Au collisions at $E_{lab} = 35$ and 25 A GeV from the PHSD model.
- Elliptic flow $v_2(p_T)$ results from the PHSD model are consistent with Au+Au collisions at $\sqrt{s_{NN}} = 7.7$ GeV from the STAR experiment.

Sensitive to initial conditions

• Integrated v_2 increases from central to pheripheral collisions showing strong centrality dependence and indicates sensitivity towards the initial conditions.

Medium Collectivity

• Eccentricity-scaled v_2 increases from peripheral to central collisions indicating increase in collectivity towards most central collisions at Au+Au collisions at $E_{lab} = 35$ and 25 A GeV from the PHSD model.

Vipul Bairathi

Thank you!

Backup

centrality selection

Centrality Selection is based on reference multiplicity (N_{ch} in |eta| < 0.5) in the PHSD model same as in case of the experimental measurements.

