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The CALET mission

The CALorimetric Electron Telescope (CALET), operating aboard the International
Space Station (ISS) since October 2015, is an experiment dedicated to high-energy
astroparticle physics.

Remarkable events:
@ August 19, 2015: launched by the Japanese
H2-B rocket;

@ August 25", 2015: emplaced on JEM-EF
(Japanese Experiment Module Exposed Facility)
port #9;

@ October 13, 2015: start of stable observations,
more than 2.7 billion events collected so far.

Viagniied Viewof the Payioad @ Mass 612.8 kg (JEM Standard Payload)
- @ Size: 1850 mm(L) x 800 mm(W) x 1000 mm(H)
' @ Power: 507 W (max)

(e N IE= @ Telemetry: Medium 600 kbps (6.5 GB/day)
Ficure 1: The CALET mission on the ISS.
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CALET observations and physics targets

Overview of CALET observations:

Fluxes of Cosmic Rays

@ direct cosmic-ray observations in space at the
highest energy region by combining:
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@ detection of transients in space by long-term
stable observations:

= electromagnetic radiation from Experiments installed on the ISS

gravitational wave sources, gamma-ray AMS-02, CALET and ISS-CREAM are
bursts, solar flares, etc. carrying out complementary measurements.

Figure 2: cosmic-ray observations on the ISS.




The CALET detector

CALET detector [1] employs a calorimeter with a field of view of ~ 45° from zenith, a
geometrical factor of ~ 1040 cm? sr and a total depth of ~ 30 radiation-length Xg for
particles at normal incidence.

It consists of:
@ CHarge Detector (CHD): a pair of plastic scintillator hodoscopes arranged in two
orthogonal layers, in order to identify the charge of the incident particle;

@ IMaging Calorimeter (IMC): a sampling calorimeter made of alternated thin layers of
Tungsten absorber and scintillating fibers read-out individually;

@ Total AbSorption Calorimeter (TASC): a packed lead-tungstate (PWO) hodoscope,
capable of almost complete containment of the TeV-electromagnetic showers.
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This design leads to excellent detector
performances: an electromagnetic shower

TASC energy resolution of ~ 2% above 20 GeV
and a protons rejection factor of ~ 105.

. i

Raunsnansas

Fiaure 3: electron (or positron) event candidate (reconstructed
energy of 3.05 TeV and energy deposit sum of 2.89 TeV).

[1] S. Torii, P. S. Marrocchesi et al., Adv. Space Res., 64 (2019) 2531



B\ The CALET instrumentation

Plastic Scintillator SRS cintillating Fiber Scintillator(PWO)
+PMT < +64anode PMT ~ + APD/PD
e e or PMT (X1)

CHD IMC TASC
(CHarge Detector (IMaging Calorimeter) (Total AbSorption Calorimeter)
Measure Charge (Z=1-40) Tracking, Particle ID Energy, e/p Separation
Geometry Plastic Scintillator 448 SciFi x 16 layers (X,Y) : 7168 SciFi 16 PWO logs x 12 layers (X,Y): 192 logs
(Material) 14 paddles x 2 layers (X,Y): 28 paddles 7 W layers (3 Xp): 0.2 Xo x5+ 1-Xg x 2 log size: (19 x 20 x 326) mm®
Paddle Size: (32 x 10 x 450) mm? SciFi size : (1 x 1 x 448) mm® Total Thickness: 27 Xo, ~ 1.2 4;
Readout PMT + CSA 64-anode PMT + ASIC APD/PD + CSA

PMT + CSA (for Trigger) @ top layer

[EIRGIGERS]

The total thickness of the instrument is equivalent to 30 Xp and 1.3 A;.
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Data analysis

Motivations:

@ observation of spectral features departing from a single power law in the energy
spectra of nuclei and different energy dependence of primary and secondary

= investigation of cosmic-ray sources, acceleration model, and propagation
effects;

@ direct measurement of the fluxes up to several tens of TeV/n

= important information for studying the connection between direct and indirect
measurements and extracting information on the origin of the knee in the
all-particle energy spectrum.

Event selections:

@ selections concerning trigger, geometrical acceptance, quality of the reconstructed
tracks, charge identification and so on are applied in order to reject the background.

MC simulation:

@ MC simulations of the instrument were developed with the EPICS [2] framework;

@ digitization of signals and trigger were accurately modelled in simulation and tuned
by using beam test results and flight data;

@ MC is used to estimate tracking and selection efficiencies and energy unfolding.

[2] K. Kasahara, Proc. of 24th ICRC, 1, 399 (1995)
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Proton spectrum

Spectrum measured [3] in Lo
50 GeV < E < 60 TeV R
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Figure 5: cosmic-ray proton spectrum measured by CALET compared
with the experimental results of AMS-02, CREAM-III, and DAMPE.

CALET spectrum is in good agreement with:

@ rigidity spectra measured by magnetic spectrometers in the sub-TeV region;
@ measurements carried out with calorimetric instruments at higher energies.

The analysis confirms the presence of a spectral hardening at a few hundred GeV
(significance of more than 20 sigma) and observes a spectral softening around 10 TeV.

[3] O. Adriani et al., Phys. Rev. Lett. 129 (2022) 101102
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Fiaure 6: CALET proton spectrum fitted with a DBPL function.
Proton spectrum fitted in 80 GeV < E < 60 TeV with a double broken power law (DBPL):

w0 =ol&s) [ (&) e |

A gradual hardening is followed by a sharp softening at about 9 TeV (s1 >> s, large
uncertainty). Spectrum shape is consistent with the most recent results of DAMPE.
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Helium spectrum

Spectrum measured [4] in
40 GeV < E < 250 TeV -
>
8
o(E) N(E) :
T AE€E)SQT s
X
®(E): helium spectrum L
E: helium kinetic energy AMS-02 (PRL-2015) CREAM-I (ApJ-2011)
N(E): number of events in AE bin (after © 1 oawpe(pAL2021) [ § |CALET (s analysis)
background subtraction) E ‘w? L . L L "
50Q: geometrical acceptance (510 cm? sr) ! Kinetic Energy [GeV] =
T: live time
AE: energy bin width Ficure 7: cosmic-ray helium spectrum measured by CALET compared
€(E): total selection efficiency with the experimental results of AMS-02, CREAM-1, and DAMPE.

CALET spectrum is in good agreement with:

@ rigidity spectra measured by magnetic spectrometers in the sub-TeV region;
@ measurements carried out with calorimetric instruments at higher energies.

The analysis observes a spectral hardening from a few hundred GeV to a few tens TeV and
also observes the onset of a spectral softening above a few tens of TeV.

[4] O. Adriani et al., Phys. Rev. Lett. 130 (2023) 171002



Helium spectrum is not consistent with a single power law covering the whole range.
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Fiaure 8: CALET helium spectrum fitted with a DBPL function.

Spectrum fitted in 60 GeV < E < 250 TeV with a double broken power law (DBPL):
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p/He flux ratio

Differences between the proton and helium spectra provide important constraints on
acceleration models.
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Fiaure 9: CALET proton and helium fluxes, as a functions of Fiaure 10: energy spectrum of p/He ratio measured by
kinetic energy per nucleon, compared with other direct CALET compared with the experimental results of CREAM
measurements. and PAMELA.

The p/He flux ratio has been measured in 60 GeV/n < E < 60 TeV/n.
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Boron and carbon spectra
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for C, O, and Fe measured fluxes); Fiaure 11: (a) boron (b) carbon and (c) ratio of boron to

@ the B/C ratio is consistent with AMS-02. carbon spectra measured by CALET compared with other
direct measurements.

Observations

[5] O. Adriani et al., Phys. Rev. Lett. 129 (2022) 251103




Fit on the boron and carbon specira

Boron and carbon spectra are not consistent with a single power law in the whole range.
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Fiaure 12: CALET B and C energy spectra fitted with DPL functions.

Spectrum fitted in 25 GeV < E < 3.8 TeV with a double power law (DPL):

C(v&v) E<E
®(E) = - Y A
0(15\') (E%) 7 E>E

The energy spectra are different as expected for primary and secondary cosmic-rays. The
flux hardens more for B than for C, above 200 GeV/n.
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Fiaure 13: The CALET B/C ratio fitted to different functions.

Spectrum fitted in 25 GeV < E < 3.8 TeV with a double power law (DPL):
This result is consistent with that of AMS-02 and supports the hypothesis that secondary B
exhibits a stronger hardening than primary C.

No definitive conclusion can be drawn due to the large uncertainty in AI5/C given by our
present statistics.



Conclusions

CALET was successfully launched on August 19th, 2015, and is successfully carrying out
observations since October 2015 with stable instrument performance

Measured light nuclei spectra presented (from few tens of GeV up to tens of TeV):
@ the proton spectrum has been published in PRL 129, 101102 (2022): we observed a
spectral hardening and a softening, fitted together with a DBPL;

@ the helium spectrum has been published in PRL 130, 171002 (2023): we observed a
spectral hardening and the onset of a softening, fitted together with a DBPL;

@ the boron and carbon spectra have been published in PRL 129, 251103 (2022): we
observed a spectral hardening at about the same energy per nucleon, fitted both with
a DPL;

Measured flux ratio presented (information on acceleration and propagation models):

@ p/He flux ratio;
@ B/C flux ratio: fitted with a DPL.

Further observations will improve the measurement of nuclei spectra by better statistics and
a further reduction of the systematic errors, especially in the TeV region.
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4 : Proton event selection

o offline trigger confirmation: offline confirmation of the online trigger (High Energy
HE in E > 300 GeV and Low Energy LE in E < 300 GeV);

e Geometrical acceptance: tracks going through the detector from the top to the
bottom are selected;

e Track quality cut: reliability of Kalman Filter fitting in IMC is checked:;

0 Electron rejection: electron events are rejected checking the energy deposit within
one Moliere radius along the track;

Q Rejection of off-acceptance events: removal of events where a secondary track is
identified as the primary track;

e TASC hit consistency: consistency of the track impact point in the TASC with the
calorimetric energy deposit;

0 Shower development in the IMC: shower development starting in IMC is required;

e Charge identification: identification of the primary particle through the ‘;—f
measurements in CHD and along the IMC track.
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Helium event selection

0 offline trigger confirmation: offline confirmation of the online trigger (High Energy
HE);

e Geometrical acceptance: tracks going through the detector from the top to the
bottom are selected, with 2 cm clearence from the edges of the TASC top layer;

e Track quality cut: reliability of Kalman Filter fitting in IMC is checked:;

e Electron rejection: electron events are rejected checking the energy deposit within
one Moliere radius along the track;

e Rejection of off-acceptance events: removal of events where a secondary track is
identified as the primary track;

Q TASC hit consistency: consistency of the track impact point in the TASC with the
calorimetric energy deposit;

@ sShower axis: the reconstructed shower axis is required to cross the TASC-X1 layer,
in order to reject lateral events erroneosly reconstructed in the fiducial region;

Q Charge identification: identification of the primary particle through the Z—f
measurements in CHD and along the IMC track.
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' Boron and Carbon event selection

o offline trigger confirmation: offline confirmation of the online trigger (High Energy
HE);

e Geometrical acceptance: tracks going through the detector from the top to the
bottom are selected, with 2 cm clearence from the edges of the TASC top layer;

e Charge identification: identification of the primary particle through the %
measurements in CHD and along the IMC track.

e Track width: removal of particle undergoing a charge-changing nuclear interaction in
the upper part of the instrument;

e Field of View: removal of the events with the reconstructed events pointing the ISS
obstacles in the CALET field of view;



B/C flux ratio

B/C flux ratio was fitted to a DPL and to functions from a leaky-box model describing the particle transport in the Galaxy.

For B/C:
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Ficure 13: The CALET B/C ratio fitted to different k (12.0 + 0.9) g/em?
functions.
§ 0.71 £ 0.11
Leaky-Box (LB) model: X (095 + 0.35) glem?

®p(E) _ A(E) 2 1 do(E) 1

—_— Ag: interaction length of B nuclei with matter of the ISM;
®c(E)  AUE)+a5 l1c-8  Pc(E) do-s Ac-8(1o_B): average path length for a nucleus C (O) to spall into B;
AE) = kE™0 + A9 A(E): mean escape path length;

¢: diffusion coefficient spectral index;

Ag: residual path length (interpreted as source grammage).

A # 0 is compatible with the hypothesis that a fraction of secondary B nuclei can be produced near the CR source.
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