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Introduction

* starting point: field theory with classical localized solutions (solitons, solitary waves)
* quantum corrections:  typically small; decisive when solitons are classically degenerate
* soliton polarizes its harmonic fluctuations

—>  shift in zero-point energies of harmonic fluctuations
cannot be normal-ordered away

* vacuum polarization energy (VPE): | Fypr = g Zk {Wk B w]({())}
ren.

* sum contains bound and scattering states

* requires renormalizable theory  (obviously)




VPE and Scattering Data  (aka spectral methods)

* (static) soliton generates potential V(1) for harmonic fluctuations ¢y (k, r)

* scattering described by momentum dependent phase d,(k) in channel /
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* change in state density: A Sk ;@56(]{) (Krein formula)
. . . dk  d
* change in state density <— change in energy:  Fypp ~ 5 Wi %56(]@
T

(scattering part)




* QFT derivation: matrix element of energy-momentum tensor
& analytic properties of Green’s functions

Evpg|V Z Dy Z Yy / o o VE m2 [ (k)| + Epp[V] + Ecr[V]

— Dy degeneracy factor in ¢-th partial wave e.g. 20+ 1
— ¢¢; bound state energies

1 N
= [Be(k)]y = 8elk) = 6, (k) ... = 6" (k)

phase shifts with first N-Born terms subtracted (expansion in V')
—> finite momentum integral  (choose N large enough)

- ELJTVD V1= O O Q e .. (expansion of the effective action up to order N in V(1))

V( ) V(. x) V(X)

— Fcp|V] counterterm contribution = standard renormalization conditions

EXS[V] + Ecr[V] finite by renormalization




x Jost solution to scattering problem: lim, .. f(k,z)e * = 1; analytic for Im(k) > 0
* Jost function: Fy(k) = |Fy(k)|e*)
-) from f(k,0) and/or f'(k,0)

-) for real k: real part even, imaginary part odd

Im(K)=t

---m
\ = zeros of Jost fct.

-) Fi(ir;) = 0 bound state wave-numbers

Re(k)

* integration in complex plane

-) semi-circle does not contribute because of Born subtractions
-) poles from - In(F'(k)) at ir; cancel (explicit) bound state contribution

-) avoid cut from w = v/m? —t> =0 (m is smallest of all masses)

L
> tdt . : :
Evpg = / - W(t)[v(t)y + EI%[) + Ecor  with  [v(t)]y = Ll;m In(Fy(it))] v
m =1
2
W(t) = for D=241 and W(t)=1 for D=3+1




Classical ANO Vortex

* appearance of vortices

-) cosmic strings in SU(2) electro-weak theory: Higgs and massive gauge bosons
(frustration at interfaces of regions with different Higgs VEVS)

-) magnetic flux in a superconductor propto topological charge n

type I. E, < nk; vortices coalesce
type II. F, > nk; isolated, single vortices

scalar field is order parameter for condensate of Cooper pairs

x model Lagrangian (scalar ED)
1 A
L= —FuF" + Do =7 (|9 - v?)’
F, =0,A4,—-0,A, and D, = (0, —ieA,) D

* mass parameters
Mz = \v? and M4 = 2v°€?




* profile functions for winding number n

b = vh(p) and Ag = nvp ——= (p = evr)
0

* boundary conditions (in singular gauge)
h(0)=0, ¢(0)=1  and lim h(p) =1, lim g(p) =0

P—> 00 P—> 00

* numerical results (in units of v?)

Ecl

My/Myin=1 n=2 n=3
0.8 | 573 11.15 16.47 | type I =
1.0 | 628 1257 1885 | BPS i
1.2 | 678 13.88 21.08 | type II ! % ;. * | ;




Higgs Fluctuations about ANO Vortex

* reveals singularities & paves way to renormalization

* singular gauge
-) vortex profiles approach vacuum configuration far away from the center v
-) singularity at center prevents Fourier transform 4

(needed for Feynman diagrams)
* background potential outside realm for textbook proot on analyticity of Jost function

* Jost function not gauge invariant (in contrast to phase shift)

quadratic divergence not excluded; encoded in v(t) — const. as t — o0

0

constant maybe dropped, as only d—tt entered in the first place (Krein formula)




* fluctuation equation for ¢ ~ vh(p) 4+ Ky (tp)ne(p)

1 1
;appapm — 2 7,(tp)O,m; + o 9%(p) —2Lg(p)] ne+ Vi (p) e,

* standard fluctuation potential: Vy(p) = 3(h7(p) — 1)

* boundary conditions: lim, .. 7/(p) = 1 and lim, d%W(P) =0
» immediate access to Jost function:  v(t) = lim, o In (1,(p))

* Born series by iteration: vy(t) =1+ Vél)(t) + Vé2>(t) + ...

* singularity at center from lim, ,og(p) =1 7

_ Ky g
- Kyy?) 2




* superficially divergent one-loop diagrams (from expansion of the effective action)
gauge invariance not manifest = need to consider all of them

vertices: A?g : As- -V, Vi

0QC

O O O
O~ T
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straight lines: scalar field;  curly lines: gauge field
external lines: Fourier transform of vortex profiles




* solely external scalar fields: O —Of
(2)

standard treatment of scalar potential V: produces 77€ and 7,” in Born series
(iterate wave-equation with g(p) = 0)

* without gauge invariance: potentially quadratically divergent diagrams with two gauge fields

O A~

gauge-variant, e.qg. sharp cut-off regularization
Qp AP
D A% +m?

d'z A, (z)AM(x) + O (AP7?)

has the same p — 0 singularity as the Born approximation from the singular potential

/ d'zA,(x)AMz) — 2mn’TL / T g(p)

Pmin p




* Born series for singular terms

. . 2
n,”': first order for <;> >O
2
¢ Ué4) + 779 - % <77é4>) - first and second order for i_g M@

* numerically confirmed

L
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* alternatively, remove ultraviolet divergences that emerge from Vy and expect

—/w@f(/)) — 0

Pmin P

L

1 2
vt =) {hﬂ () =y — ) + 5 <77§1)) }

(=L

=Pmin

for L,t — oo and ppin — 0




* limit . — oo conceptually problematic for singular background
(non-singular profiles work just fine)

what is large L; perhaps L o< (p)t?

* typical test profile functions (kink & BPS for gauge field)
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* indeed seems to converge to zero, though large L needed already at moderate ¢

* but wrong power law:  suggests f dtt|v(t)], < oo 7 (should be log. divergent)

already an issue in the context of fermions coupled to a QED vortex
(Pasipoularides, hep-th/0012031; Graham et al., hep-th/0410171)




* gauge invariant treatment of Feynman diagrams (dimensional regularization)

O O O] D
D G <3
(D= - D [ O

-) red crosses vanish identically (odd numbers of gauge profile insertions)

-) blue and green markers: ultraviolet divergences cancel

-) pink boxes: already dealt with via nél) and néz)




* two gauge field insertions: ;O MO~

* contribution to VPE per unit length in dimensional regularization (D = 4 — 2¢)

1

(A) _ 2 5%
Evee div.  12¢(4m)? /d Ewk

* standard wavetunction renormalization for gauge field

* scattering data analog of this logarithmic ultraviolet divergence:

1 12dl
B = —— [ / d*x F,, F “”] (M arbitrary)
o o T | VEESTE div.
2 00
n- 1 d
implies (), — wnlt)=—=— —pg’2(p) >0 7




* extrapolation needed
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* finally, correct asymptotic behavior but not yet renormalized
* standard procedure not applicable because Born series is ill-defined

* fake boson trick: generate scattering data with the correct asymptotic behavior
and that can be identified with a log. divergent Feynman diagram

72)(t): summed second order Jost function from
boson fluctuations scattering of a scalar potential V(p)

1 (0.@)
Evpg = o / tdt {Z/OO@) — 037(2)(15)} +  finite renormalization contributions

m
(incl. Eff) )
9 [ dp 12
n 0 p g (/0)

3 [ pdp VE(p)

Cp = [5(2)(75) — —ﬁ I pde]?(p) as t — oo]




VPE of ANO Vortex in BPS Scenario

* full theory in the BPS case A = 2¢* has (simple) scattering problem
* quantum fluctuations: & = dg+n  and  AF = AL+ a”

* gauge fixing for gauge fluctuations

1 : * *
Lot = =5 00" +ie (Psy” — )]

* Faddeev-Popov ghosts ¢

Lo, =7 (9,0" +2¢*|Ps|*) c+ non-harmonic terms

* gauge fluctuations, a/: time-like & longitudinal (|| vortex) decouple from transverse modes




* ghost and decoupled gauge fluctuations partially cancel in Eypg!

-) full cancellation occurs in D =3+ 1 (Min & Lee, hep-th/9409006)

-)in D = 2+ 1 only one component canceled: simple additional scalar scattering problem
(adds negatively to Eypg)

* additional divergent Feynman diagrams with gauge fluctuations

O O X

do not generate new singularities associated with p — 0




* four gauge invariant counterterm structures

CgFILWF’LW + O} ‘DMCD‘Q + Cy (|q)‘2 _ ?)2> iye™ (‘(I)|2 B ?)2>2

* four conditions:
no-tadpole, two residues of propagators, Higgs mass
—> gauge field mass acquires quantum corrections
its effect on Fvpp is two-loop order




Numerical Results

*xD=2+1

n=1|n=2|n=3|n=4

Ecor + Epp | -0.2484 | -0.6546 |-1.0801 | -1.5215
Eocat. -0.0882 1 -0.3408 [-0.6631 | -1.0205
EvpE -0.3367-0.9955 |-1.7432 | -2.5420

Eypg(n) =~ —0.3348 — 0.6314(n — 1) — 0.0350(n — 1)

binding energies

Eypr(n) — nEypp(l) = —0.297(n — 1) — 0.035(n — 1)* < 0




*xD=3+1

n=1 n=2|n=3|n=4

Ecr + Erp | 0.0078 [-0.0054 |-0.0114 | -0.0157
Flocat. -0.0255{-0.0969 |-0.1782|-0.2627
Evpr -0.01771-0.1023 |-0.1896 | -0.2784

Eypr(n) ~ —0.0166 — 0.0869(n — 1)

binding energies

EVPE(TL) — nEva(l) ~ —OO70(n — 1) < 0

either case favors coalesced over isolated vortices




Summary

* (almost) no word about numerical subtleties

* consequences of singular vortex structure
e nced to make contact with free Green’s function requires singular gauge
e singular structure requires a non-dynamical zeroth order Born subtraction for Jost function
e zeroth order Born subtraction complies with gauge invariance (no quadratic divergence)

e slowly converging angular momentum sum requires extrapolation
* VPE of BPS vortex approximately scales with (1 — n), classical energy with n
* stabilization of BPS vortices with higher winding number by quantum corrections

* first study of VPE in a renormalizable soliton model in different topological sectors
e rclevant for binding energies in a particle interpretation of solitons
e models in D = 1 + 1 lack localized static solutions with higher winding numbers

e typically soliton models in higher dimensions are not renormalizable (Skyrme, NJL, ...)
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