Quantum Corrections to

Binding Energies of BPS Vortices

H. Weigel

(Stellenbosch University, Institute for Theoretical Physics) Online-presentation at ICNFP 2023, Kolymbari, July 17th 2023

Presentation mainly based on: N. Graham, HW, Phys. Rev. **D101** (2020) 076006; **D104** (2021) L011901; **D106** (2022) 076013

recent review: N. Graham, HW, Int. J. Mod. Phys. A37 (2022) 2241004

see also: N. Graham, M. Quandt, HW, Springer Lect. Notes Phys. 777 (2009)

Introduction

 \star starting point: field theory with classical localized solutions (solitons, solitary waves)

 \star quantum corrections: typically small; decisive when solitons are classically degenerate

 \star soliton polarizes its harmonic fluctuations

 \implies shift in zero-point energies of harmonic fluctuations cannot be normal-ordered away

 \star vacuum polarization energy (VPE):

$$E_{\text{VPE}} = \frac{\hbar}{2} \sum_{k} \left[\omega_k - \omega_k^{(0)} \right]_{\text{ren.}}$$

 \star sum contains bound and scattering states

 \star requires renormalizable theory (obviously)

VPE and Scattering Data (aka spectral methods)

 \star (static) soliton generates potential V(r) for harmonic fluctuations $\psi_{\ell}(k,r)$

 \star scattering described by momentum dependent phase $\delta_{\ell}(k)$ in channel ℓ

* change in state density:
$$\Delta \frac{\delta n_{\ell}(k)}{\delta k} = \frac{1}{\pi} \frac{d}{dk} \delta_{\ell}(k)$$
 (Krein formula)

* change in state density \longleftrightarrow change in energy: $E_{\text{VPE}} \sim \int \frac{dk}{2\pi} \omega_k \frac{d}{dk} \delta_\ell(k)$ (scattering part)

 \star QFT derivation: matrix element of energy-momentum tensor & analytic properties of Green's functions

$$E_{\text{VPE}}[V] = \sum_{\ell} D_{\ell} \left[\sum_{j} \frac{\epsilon_{\ell j}}{2} + \int_{0}^{\infty} \frac{dk}{2\pi} \sqrt{k^{2} + m^{2}} \frac{d}{dk} [\delta_{\ell}(k)]_{N} \right] + E_{\text{FD}}^{N}[V] + E_{\text{CT}}[V]$$

 $-D_{\ell}$ degeneracy factor in ℓ -th partial wave $e.g. 2\ell + 1$

 $-\epsilon_{\ell j}$ bound state energies

 $- [\delta_{\ell}(k)]_{N} = \delta_{\ell}(k) - \delta_{\ell}^{(1)}(k) - \ldots - \delta_{\ell}^{(N)}(k)$ phase shifts with first N-Born terms subtracted (expansion in V) $\implies \text{finite momentum integral} \quad (\text{choose } N \text{ large enough})$

$$-E_{\rm FD}^N[V] = \underbrace{\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & &$$

(expansion of the effective action up to order N in V(r))

 $- E_{\rm CT}[V]$ counterterm contribution \Rightarrow standard renormalization conditions $E_{\rm FD}^N[V] + E_{\rm CT}[V]$ finite by renormalization

- * Jost solution to scattering problem: $\lim_{x\to\infty} f(k,x)e^{-ikx} = 1$; analytic for $\mathsf{Im}(k) \ge 0$
- * Jost function: $F_{\ell}(k) = |F_{\ell}(k)| e^{i\delta_{\ell}(k)}$
 - -) from f(k,0) and/or f'(k,0)
 - -) for real k: real part even, imaginary part odd
 - -) $F_{\ell}(i\kappa_j) = 0$ bound state wave-numbers

- \star integration in complex plane
 - -) semi-circle does not contribute because of Born subtractions
 - -) poles from $\frac{d}{dk} \ln(F(k))$ at $i\kappa_j$ cancel (explicit) bound state contribution
 - -) avoid cut from $\omega = \sqrt{m^2 t^2} = 0$ (*m* is smallest of all masses)

$$E_{\text{VPE}} = \int_{m}^{\infty} \frac{t dt}{4\pi} W(t) \left[\nu(t)\right]_{N} + E_{\text{FD}}^{(N)} + E_{\text{CT}} \quad \text{with} \quad \left[\nu(t)\right]_{N} = \lim_{L \to \infty} \sum_{\ell = -L}^{L} \left[\ln(F_{\ell}(it))\right]_{N}$$
$$W(t) = \frac{2}{\sqrt{t^{2} - m^{2}}} \quad \text{for} \quad D = 2 + 1 \quad \text{and} \quad W(t) = 1 \quad \text{for} \quad D = 3 + 1$$

Classical ANO Vortex

 \star appearance of vortices

-) cosmic strings in SU(2) electro-weak theory: Higgs and massive gauge bosons (frustration at interfaces of regions with different Higgs VEVs)

-) magnetic flux in a superconductor propto topological charge ntype I: $E_n < nE_1$ vortices coalesce type II: $E_n > nE_1$ isolated, single vortices scalar field is order parameter for condensate of Cooper pairs

 \star model Lagrangian (scalar ED)

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}\Phi|^2 - \frac{\lambda}{4} \left(|\Phi|^2 - v^2\right)^2$$
$$F_{\mu\nu} = \partial_{\mu}A_{\mu} - \partial_{\nu}A_{\mu} \quad \text{and} \quad D_{\mu}\Phi = \left(\partial_{\mu} - \mathrm{i}eA_{\mu}\right)\Phi$$

 \star mass parameters

$$M_H^2 = \lambda v^2$$
 and $M_A^2 = 2v^2 e^2$

 \star profile functions for winding number n

$$\Phi_S = vh(\rho)$$
 and $A_S = nv\hat{\varphi}\frac{g(\rho)}{\rho}$ $(\rho = evr)$

* boundary conditions (in singular gauge)

$$h(0) = 0$$
, $g(0) = 1$ and $\lim_{\rho \to \infty} h(\rho) = 1$, $\lim_{\rho \to \infty} g(\rho) = 1$

 \star numerical results (in units of v^2)

		$E_{ m cl}$		
M_H/M_A	n = 1	n=2	n = 3	
0.8	5.73	11.15	16.47	type I
1.0	6.28	12.57	18.85	BPS
1.2	6.78	13.88	21.08	type II

0

Higgs Fluctuations about ANO Vortex

- \star reveals singularities & paves way to renormalization
- \star singular gauge
 - -) vortex profiles approach vacuum configuration far away from the center \checkmark
 - -) singularity at center prevents Fourier transform (needed for Feynman diagrams)

 \star background potential outside realm for textbook proof on analyticity of Jost function

* Jost function not gauge invariant (in contrast to phase shift) quadratic divergence not excluded; encoded in $\nu(t) \longrightarrow \text{const.}$ as $t \longrightarrow \infty$ constant maybe dropped, as only $\frac{d\nu(t)}{dt}$ entered in the first place (Krein formula) * fluctuation equation for $\phi \sim vh(\rho) + K_{|\ell|}(t\rho)\eta_{\ell}(\rho)$

$$\frac{1}{\rho}\partial_{\rho}\rho\partial_{\rho}\eta_{\ell} = 2tZ_{\ell}(t\rho)\partial_{\rho}\eta_{\ell} + \frac{1}{\rho^{2}}\left[g^{2}(\rho) - 2\ell g(\rho)\right]\eta_{\ell} + V_{H}(\rho)\eta_{\ell}, \qquad Z_{\ell}(z) = \frac{K_{|\ell|+1}(z)}{K_{|\ell|}(z)} - \frac{|\ell|}{z}$$

- \star standard fluctuation potential: $V_H(\rho) = 3(h^2(\rho) 1)$
- * boundary conditions: $\lim_{\rho \to \infty} \eta_{\ell}(\rho) = 1$ and $\lim_{\rho \to \infty} \frac{d}{d\rho} \eta_{\ell}(\rho) = 0$
- \star immediate access to Jost function: $\nu_\ell(t) = \lim_{\rho \to 0} \ln \left(\eta_\ell(\rho) \right)$
- * Born series by iteration: $\nu_{\ell}(t) = 1 + \nu_{\ell}^{(1)}(t) + \nu_{\ell}^{(2)}(t) + \dots$
- * singularity at center from $\lim_{\rho \to 0} g(\rho) = 1$?

 \star superficially divergent one-loop diagrams (from expansion of the effective action) gauge invariance not manifest \implies need to consider all of them

vertices: \boldsymbol{A}_{S}^{2} , $\boldsymbol{A}_{S} \cdot \boldsymbol{\nabla}$, V_{H}

straight lines: scalar field; curly lines: gauge field external lines: Fourier transform of vortex profiles

* solely external scalar fields: $-\bigcirc$ $-\bigcirc$ $-\bigcirc$ standard treatment of scalar potential V_H : produces $\eta_\ell^{(1)}$ and $\eta_\ell^{(2)}$ in Born series (iterate wave-equation with $g(\rho) = 0$)

 \star without gauge invariance: potentially quadratically divergent diagrams with two gauge fields

gauge-variant, e.g. sharp cut-off regularization

$$\frac{\Omega_D}{D} \frac{\Lambda^D}{\Lambda^2 + m^2} \int d^4x \, A_\mu(x) A^\mu(x) + \mathcal{O}\left(\Lambda^{D-2}\right)$$

has the same $\rho \rightarrow 0$ singularity as the Born approximation from the singular potential

$$\int d^4x A_{\mu}(x) A^{\mu}(x) \longrightarrow 2\pi n^2 T L \int_{\rho_{\min}}^{\infty} d\rho \frac{g^2(\rho)}{\rho}$$

- \star Born series for singular terms
 - $\eta_{\ell}^{(3)}$: first order for $\left(\frac{g}{\rho}\right)^2$

•
$$\eta_{\ell}^{(4)} + \eta_{\ell}^{(5)} - \frac{1}{2} \left(\eta_{\ell}^{(4)} \right)^2$$
: first and second order for $\frac{\ell g}{\rho^2}$ ~

 \star numerically confirmed

$$\lim_{L \to \infty} \sum_{\ell = -L}^{L} \left\{ \eta_{\ell}^{(3)} + \eta_{\ell}^{(4)} + \eta_{\ell}^{(5)} - \frac{1}{2} \left(\eta_{\ell}^{(4)} \right)^{2} \right\} \bigg|_{\rho = \rho_{\min}} \longrightarrow \int_{\rho_{\min}}^{\infty} \frac{d\rho}{\rho} g^{2}(\rho) + \mathcal{O}\left(\frac{1}{t}\right) \quad \text{as} \quad \rho_{\min} \to 0$$

 \star alternatively, remove ultraviolet divergences that emerge from V_H and expect

$$\nu_L(t)_L = \sum_{\ell=-L}^{L} \left\{ \ln(\eta_\ell) - \eta_\ell^{(1)} - \eta_\ell^{(2)} + \frac{1}{2} \left(\eta_\ell^{(1)} \right)^2 \right\} \bigg|_{\rho=\rho_{\min}} - \int_{\rho_{\min}}^{\infty} \frac{d\rho}{\rho} g^2(\rho) \longrightarrow 0$$

for $L, t \to \infty$ and $\rho_{\min} \to 0$

* limit $L \to \infty$ conceptually problematic for singular background (non-singular profiles work just fine) what is large L; perhaps $L \propto \langle \rho \rangle t$?

 \star typical test profile functions (kink & BPS for gauge field)

 \star indeed seems to converge to zero, though large L needed already at moderate t

* but wrong power law: suggests $\int dt t [\nu(t)]_L \leq \infty$? (should be log. divergent) already an issue in the context of fermions coupled to a QED vortex (Pasipoularides, hep-th/0012031; Graham *et al.*, hep-th/0410171) \star gauge invariant treatment of Feynman diagrams (dimensional regularization)

-) red crosses vanish identically (odd numbers of gauge profile insertions)

- -) blue and green markers: ultraviolet divergences cancel
- -) pink boxes: already dealt with via $\eta_{\ell}^{(1)}$ and $\eta_{\ell}^{(2)}$

 \star two gauge field insertions:

 \star contribution to VPE per unit length in dimensional regularization $(D = 4 - 2\epsilon)$

$$E_{\text{VPE}}^{(A)}\Big|_{\text{div.}} = \frac{1}{12\epsilon(4\pi)^2} \int d^2x \, F_{\mu\nu} F^{\mu\nu}$$

 \star standard wavefunction renormalization for gauge field

 \star scattering data analog of this logarithmic ultraviolet divergence:

$$E_{\text{VPE}}^{(A)}\Big|_{\text{div.}} = \frac{1}{96\pi^2} \left[\int d^2x \, F_{\mu\nu} F^{\mu\nu} \right] \int \frac{l^2 dl}{\sqrt{l^2 + M^2}^3} \Big|_{\text{div.}} \qquad (M \text{ arbitrary})$$

implies
$$[\nu(t)]_L \longrightarrow \nu_{\text{l.f.}}(t) = \frac{n^2}{t^2} \frac{1}{12} \int_0^\infty \frac{d\rho}{\rho} g'^2(\rho) > 0 \quad \checkmark$$

 \star extrapolation needed

$$[\nu(t)]_L = \nu_{\infty}(t) + \frac{c_1(t)}{L} + \frac{c_2(t)}{L^2} + \dots \quad \text{as} \quad \rho_{\min} \to 0$$

- \star finally, correct asymptotic behavior but not yet renormalized
- \star standard procedure not applicable because Born series is ill-defined
- * fake boson trick: generate scattering data with the correct asymptotic behavior and that can be identified with a log. divergent Feynman diagram $\overline{\nu}^{(2)}(t)$: summed second order Jost function from boson fluctuations scattering of a scalar potential $V_f(\rho)$

$$E_{\text{VPE}} = \frac{1}{2\pi} \int_{m}^{\infty} t dt \left[\nu_{\infty}(t) - c_B \overline{\nu}^{(2)}(t) \right] + \text{ finite renormalization contributions}$$

(incl. $E_{\text{fb}}^{(2)}$)
$$c_B = -\frac{n^2}{3} \frac{\int_0^{\infty} \frac{d\rho}{\rho} g'^2(\rho)}{\int_0^{\infty} \rho d\rho V_f^2(\rho)} \qquad \left[\overline{\nu}^{(2)}(t) \rightarrow -\frac{1}{4t^2} \int_0^{\infty} \rho d\rho V_f^2(\rho) \text{ as } t \rightarrow \infty \right]$$

VPE of ANO Vortex in BPS Scenario

 \star full theory in the BPS case $\lambda=2e^2$ has (simple) scattering problem

* quantum fluctuations: $\Phi = \Phi_S + \eta$ and $A^{\mu} = A^{\mu}_S + a^{\mu}$

 \star gauge fixing for gauge fluctuations

$$\mathcal{L}_{gf} = -\frac{1}{2} \left[\partial_{\mu} a^{\mu} + ie \left(\Phi_{S} \eta^{*} - \Phi_{S}^{*} \eta \right) \right]^{2}$$

 \star Faddeev-Popov ghosts c

 $\mathcal{L}_{\rm gh} = \overline{c} \left(\partial_{\mu} \partial^{\mu} + 2e^2 |\Phi_S|^2 \right) c + \text{ non-harmonic terms}$

 \star gauge fluctuations, a^{μ} : time-like & longitudinal (|| vortex) decouple from transverse modes

 \star ghost and decoupled gauge fluctuations partially cancel in $E_{\rm VPE}!$

-) full cancellation occurs in D = 3 + 1 (Min & Lee, hep-th/9409006)

-) in D = 2 + 1 only one component canceled: simple additional scalar scattering problem (adds negatively to E_{VPE})

 \star additional divergent Feynman diagrams with gauge fluctuations

do not generate new singularities associated with ho ightarrow 0

 \star four gauge invariant counterterm structures

$$C_{g}F_{\mu\nu}F^{\mu\nu} + C_{h}\left|D_{\mu}\Phi\right|^{2} + C_{0}\left(|\Phi|^{2} - v^{2}\right) + C_{V}\left(|\Phi|^{2} - v^{2}\right)^{2}$$

 \star four conditions:

no-tadpole, two residues of propagators, Higgs mass

 \implies gauge field mass acquires quantum corrections its effect on E_{VPE} is two-loop order

Numerical Results

 $\star D = 2 + 1$

binding energies

$$E_{\rm VPE}(n) - nE_{\rm VPE}(1) \approx -0.297(n-1) - 0.035(n-1)^2 < 0$$

$\star D = 3 + 1$

	n = 1	n=2	n=3	n = 4				
$E_{\rm CT} + E_{\rm FD}$	0.0078	-0.0054	-0.0114	-0.0157				
$E_{\rm scat.}$	-0.0255	-0.0969	-0.1782	-0.2627				
$E_{\rm VPE}$	-0.0177	-0.1023	-0.1896	-0.2784				
$E_{\rm VPE}(n) \approx -0.0166 - 0.0869(n-1)$								

binding energies

$$E_{\rm VPE}(n) - nE_{\rm VPE}(1) \approx -0.070(n-1) < 0$$

either case favors coalesced over isolated vortices

Summary

 \star (almost) no word about numerical subtleties

 \star consequences of singular vortex structure

- need to make contact with free Green's function requires singular gauge
- \bullet singular structure requires a non-dynamical zeroth order Born subtraction for Jost function
- *zeroth* order Born subtraction complies with gauge invariance (no quadratic divergence)
- \bullet slowly converging angular momentum sum requires extrapolation
- \star VPE of BPS vortex approximately scales with (1-n), classical energy with n
- \star stabilization of BPS vortices with higher winding number by quantum corrections
- \star first study of VPE in a renormalizable soliton model in different topological sectors
 - relevant for binding energies in a particle interpretation of solitons
 - models in D = 1 + 1 lack localized static solutions with higher winding numbers
 - typically soliton models in higher dimensions are not renormalizable (Skyrme, NJL, ...)

Thank you for

your attention !