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Introduction

⋆ starting point: field theory with classical localized solutions (solitons, solitary waves)

⋆ quantum corrections: typically small; decisive when solitons are classically degenerate

⋆ soliton polarizes its harmonic fluctuations
=⇒ shift in zero-point energies of harmonic fluctuations

cannot be normal-ordered away

⋆ vacuum polarization energy (VPE): EVPE = ~

2

∑

k

[

ωk − ω
(0)
k

]

ren.

⋆ sum contains bound and scattering states

⋆ requires renormalizable theory (obviously)



VPE and Scattering Data (aka spectral methods)

⋆ (static) soliton generates potential V (r) for harmonic fluctuations ψℓ(k, r)

⋆ scattering described by momentum dependent phase δℓ(k) in channel ℓ

⋆ change in state density: ∆
δnℓ(k)

δk
=

1

π

d

dk
δℓ(k) (Krein formula)

⋆ change in state density←→ change in energy:
(scattering part)

EVPE ∼
∫

dk

2π
ωk

d

dk
δℓ(k)



⋆ QFT derivation: matrix element of energy-momentum tensor
& analytic properties of Green’s functions

EVPE[V ] =
∑

ℓ

Dℓ

[

∑

j

ǫℓj
2
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∫ ∞

0

dk

2π
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k2 +m2

d

dk
[δℓ(k)]N

]

+ EN
FD[V ] + ECT[V ]

– Dℓ degeneracy factor in ℓ-th partial wave e.g. 2ℓ + 1

– ǫℓj bound state energies

– [δℓ(k)]N = δℓ(k)− δ(1)ℓ (k)− . . .− δ(N)
ℓ (k)

phase shifts with first N -Born terms subtracted (expansion in V )

=⇒ finite momentum integral (choose N large enough)
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V(x)

+

V(x) V(x)

V(x) V(x)V(x)

+ (expansion of the effective action up to order N in V (r))

– ECT[V ] counterterm contribution⇒ standard renormalization conditions

EN
FD[V ] + ECT[V ] finite by renormalization



⋆ Jost solution to scattering problem: limx→∞ f(k, x)e−ikx = 1; analytic for Im(k) ≥ 0

⋆ Jost function: Fℓ(k) = |Fℓ(k)|eiδℓ(k)
-) from f(k, 0) and/or f ′(k, 0)

-) for real k: real part even, imaginary part odd

-) Fℓ(iκj) = 0 bound state wave-numbers
Re(k)

x
x

x
m

bound states = zeros of Jost fct.

Im(k)=t

⋆ integration in complex plane

-) semi-circle does not contribute because of Born subtractions

-) poles from d
dk ln(F (k)) at iκj cancel (explicit) bound state contribution

-) avoid cut from ω =
√
m2 − t2 = 0 (m is smallest of all masses)

EVPE =

∫ ∞

m

tdt

4π
W (t) [ν(t)]N + E

(N)
FD + ECT with [ν(t)]N = lim

L→∞

L
∑

ℓ=−L
[ln(Fℓ(it))]N

W (t) =
2√

t2 −m2
for D = 2 + 1 and W (t) = 1 for D = 3 + 1



Classical ANO Vortex

⋆ appearance of vortices

-) cosmic strings in SU (2) electro-weak theory: Higgs and massive gauge bosons
(frustration at interfaces of regions with different Higgs VEVs)

-) magnetic flux in a superconductor propto topological charge n

type I: En < nE1 vortices coalesce
type II: En > nE1 isolated, single vortices

scalar field is order parameter for condensate of Cooper pairs

⋆ model Lagrangian (scalar ED)

L = −1
4
FµνF

µν + |DµΦ|2 −
λ

4

(

|Φ|2 − v2
)2

Fµν = ∂µAµ − ∂νAµ and DµΦ = (∂µ − ieAµ) Φ

⋆ mass parameters
M 2

H = λv2 and M 2
A = 2v2e2



⋆ profile functions for winding number n

ΦS = vh(ρ) and AS = nvϕ̂
g(ρ)

ρ
(ρ = evr)

⋆ boundary conditions (in singular gauge)

h(0) = 0 , g(0) = 1 and lim
ρ→∞

h(ρ) = 1 , lim
ρ→∞

g(ρ) = 0

⋆ numerical results (in units of v2)

Ecl

MH/MA n = 1 n = 2 n = 3

0.8 5.73 11.15 16.47 type I

1.0 6.28 12.57 18.85 BPS

1.2 6.78 13.88 21.08 type II
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Higgs Fluctuations about ANO Vortex

⋆ reveals singularities & paves way to renormalization

⋆ singular gauge

-) vortex profiles approach vacuum configuration far away from the center X

-) singularity at center prevents Fourier transform E

(needed for Feynman diagrams)

⋆ background potential outside realm for textbook proof on analyticity of Jost function

⋆ Jost function not gauge invariant (in contrast to phase shift)

quadratic divergence not excluded; encoded in ν(t) −→ const. as t −→ ∞
constant maybe dropped, as only dν(t)

dt
entered in the first place (Krein formula)



⋆ fluctuation equation for φ ∼ vh(ρ) +K|ℓ|(tρ)ηℓ(ρ)

1

ρ
∂ρρ∂ρηℓ = 2tZℓ(tρ)∂ρηℓ +

1

ρ2
[

g2(ρ)− 2ℓg(ρ)
]

ηℓ + VH(ρ) ηℓ , Zℓ(z) =
K|ℓ|+1(z)

K|ℓ|(z)
− |ℓ|z

⋆ standard fluctuation potential: VH(ρ) = 3(h2(ρ)− 1)

⋆ boundary conditions: limρ→∞ ηℓ(ρ) = 1 and limρ→∞
d
dρηℓ(ρ) = 0

⋆ immediate access to Jost function: νℓ(t) = limρ→0 ln (ηℓ(ρ))

⋆ Born series by iteration: νℓ(t) = 1 + ν
(1)
ℓ (t) + ν

(2)
ℓ (t) + . . .

⋆ singularity at center from limρ→0 g(ρ) = 1 ?



⋆ superficially divergent one-loop diagrams (from expansion of the effective action)

gauge invariance not manifest =⇒ need to consider all of them

vertices: A2
S , AS ·∇ , VH

straight lines: scalar field; curly lines: gauge field
external lines: Fourier transform of vortex profiles



⋆ solely external scalar fields:

standard treatment of scalar potential VH : produces η
(1)
ℓ and η

(2)
ℓ in Born series

(iterate wave-equation with g(ρ) = 0)

⋆ without gauge invariance: potentially quadratically divergent diagrams with two gauge fields

gauge-variant, e.g. sharp cut-off regularization
ΩD
D

ΛD

Λ2 +m2

∫

d4xAµ(x)A
µ(x) +O

(

ΛD−2
)

has the same ρ → 0 singularity as the Born approximation from the singular potential
∫

d4xAµ(x)A
µ(x) −→ 2πn2TL

∫ ∞

ρmin

dρ
g2(ρ)

ρ



⋆ Born series for singular terms

• η
(3)
ℓ : first order for

(

g
ρ

)2

• η
(4)
ℓ + η

(5)
ℓ − 1

2

(

η
(4)
ℓ

)2

: first and second order for ℓg
ρ2

⋆ numerically confirmed

lim
L→∞

L
∑
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∣
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∣

∣
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−→
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dρ

ρ
g2(ρ) +O

(

1

t

)

as ρmin→ 0

⋆ alternatively, remove ultraviolet divergences that emerge from VH and expect

νL(t)L =

L
∑

ℓ=−L

{

ln (ηℓ)− η(1)ℓ − η
(2)
ℓ +

1

2

(

η
(1)
ℓ

)2
}

∣

∣

∣

∣

∣
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−
∫ ∞

ρmin

dρ

ρ
g2(ρ) −→ 0

for L, t → ∞ and ρmin → 0



⋆ limit L → ∞ conceptually problematic for singular background

(non-singular profiles work just fine)

what is large L; perhaps L ∝ 〈ρ〉t?

⋆ typical test profile functions (kink & BPS for gauge field)
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⋆ indeed seems to converge to zero, though large L needed already at moderate t

⋆ but wrong power law: suggests
∫

dt t [ν(t)]L ≤ ∞ ? (should be log. divergent)

already an issue in the context of fermions coupled to a QED vortex

(Pasipoularides, hep-th/0012031; Graham et al., hep-th/0410171)



⋆ gauge invariant treatment of Feynman diagrams (dimensional regularization)

-) red crosses vanish identically (odd numbers of gauge profile insertions)

-) blue and green markers: ultraviolet divergences cancel

-) pink boxes: already dealt with via η
(1)
ℓ and η

(2)
ℓ



⋆ two gauge field insertions:

⋆ contribution to VPE per unit length in dimensional regularization (D = 4− 2ǫ)

E
(A)
VPE

∣

∣

∣

div.
=

1

12ǫ(4π)2

∫

d2xFµνF
µν

⋆ standard wavefunction renormalization for gauge field

⋆ scattering data analog of this logarithmic ultraviolet divergence:

E
(A)
VPE

∣

∣

∣

∣

∣

div.

=
1

96π2

[
∫

d2xFµνF
µν

]
∫

l2dl
√
l2 +M 2

3

∣

∣

∣

∣

∣

div.

(M arbitrary)

implies [ν(t)]L −→ νl.f.(t) =
n2

t2
1

12

∫ ∞

0

dρ

ρ
g′2(ρ) > 0 E



⋆ extrapolation needed

[ν(t)]L = ν∞(t) +
c1(t)

L
+
c2(t)

L2
+ . . . as ρmin → 0
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⋆ finally, correct asymptotic behavior but not yet renormalized

⋆ standard procedure not applicable because Born series is ill-defined

⋆ fake boson trick: generate scattering data with the correct asymptotic behavior

and that can be identified with a log. divergent Feynman diagram

ν(2)(t): summed second order Jost function from
boson fluctuations scattering of a scalar potential Vf(ρ)

EVPE =
1

2π

∫ ∞

m

tdt
[

ν∞(t)− cBν(2)(t)
]

+ finite renormalization contributions

(incl. E
(2)
fb )

cB = −n
2

3

∫∞
0

dρ
ρ
g′2(ρ)

∫∞
0 ρdρ V 2

f (ρ)

[

ν(2)(t) → − 1
4t2

∫∞
0 ρdρ V 2

f (ρ) as t → ∞
]



VPE of ANO Vortex in BPS Scenario

⋆ full theory in the BPS case λ = 2e2 has (simple) scattering problem

⋆ quantum fluctuations: Φ = ΦS + η and Aµ = Aµ
S + aµ

⋆ gauge fixing for gauge fluctuations

Lgf = −
1

2
[∂µa

µ + ie (ΦSη
∗ − Φ∗Sη)]

2

⋆ Faddeev-Popov ghosts c

Lgh = c
(

∂µ∂
µ + 2e2|ΦS|2

)

c + non-harmonic terms

⋆ gauge fluctuations, aµ: time-like & longitudinal (‖ vortex) decouple from transverse modes



⋆ ghost and decoupled gauge fluctuations partially cancel in EVPE!

-) full cancellation occurs in D = 3 + 1 (Min & Lee, hep-th/9409006)

-) in D = 2 + 1 only one component canceled: simple additional scalar scattering problem
(adds negatively to EVPE)

⋆ additional divergent Feynman diagrams with gauge fluctuations

do not generate new singularities associated with ρ → 0



⋆ four gauge invariant counterterm structures

CgFµνF
µν + Ch |DµΦ|2 + C0

(

|Φ|2 − v2
)

+ CV
(

|Φ|2 − v2
)2

⋆ four conditions:
no-tadpole, two residues of propagators, Higgs mass
=⇒ gauge field mass acquires quantum corrections

its effect on EVPE is two-loop order



Numerical Results

⋆ D = 2 + 1
n = 1 n = 2 n = 3 n = 4

ECT + EFD -0.2484 -0.6546 -1.0801 -1.5215
Escat. -0.0882 -0.3408 -0.6631 -1.0205
EVPE -0.3367 -0.9955 -1.7432 -2.5420

EVPE(n) ≈ −0.3348− 0.6314(n− 1)− 0.0350(n− 1)2

binding energies

EVPE(n)− nEVPE(1) ≈ −0.297(n− 1)− 0.035(n− 1)2 < 0



⋆ D = 3 + 1
n = 1 n = 2 n = 3 n = 4

ECT + EFD 0.0078 -0.0054 -0.0114 -0.0157
Escat. -0.0255 -0.0969 -0.1782 -0.2627
EVPE -0.0177 -0.1023 -0.1896 -0.2784

EVPE(n) ≈ −0.0166− 0.0869(n− 1)

binding energies
EVPE(n)− nEVPE(1) ≈ −0.070(n− 1) < 0

either case favors coalesced over isolated vortices



Summary

⋆ (almost) no word about numerical subtleties

⋆ consequences of singular vortex structure

• need to make contact with free Green’s function requires singular gauge

• singular structure requires a non-dynamical zeroth order Born subtraction for Jost function

• zeroth order Born subtraction complies with gauge invariance (no quadratic divergence)

• slowly converging angular momentum sum requires extrapolation

⋆ VPE of BPS vortex approximately scales with (1− n), classical energy with n

⋆ stabilization of BPS vortices with higher winding number by quantum corrections

⋆ first study of VPE in a renormalizable soliton model in different topological sectors

• relevant for binding energies in a particle interpretation of solitons

• models in D = 1 + 1 lack localized static solutions with higher winding numbers

• typically soliton models in higher dimensions are not renormalizable (Skyrme, NJL, ...)
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