Quantum Corrections to

Binding Energies of BPS Vortices

H. Weigel

(Stellenbosch University, Institute for Theoretical Physics)

Online-presentation at ICNFP 2023, Kolymbari, July 17th 2023

Presentation mainly based on:

N. Graham, HW, Phys. Rev. D101 (2020) 076006; D104 (2021) L011901; D106 (2022) 076013

recent review: N. Graham, HW, Int. J. Mod. Phys. A37 (2022) 2241004

see also: N. Graham, M. Quandt, HW, Springer Lect. Notes Phys. 777 (2009)

Introduction

- \star starting point: field theory with classical localized solutions (solitons, solitary waves)
- \star quantum corrections: typically small; decisive when solitons are classically degenerate
- \star soliton polarizes its harmonic fluctuations
	- =⇒ shift in zero-point energies of harmonic fluctuations cannot be normal-ordered away

 \star vacuum polarization energy (VPE):

$$
E_{\rm VPE} = \frac{\hbar}{2} \sum_{k} \left[\omega_k - \omega_k^{(0)} \right]_{\rm ren.}
$$

 \star sum contains bound and scattering states

 \star requires renormalizable theory (obviously)

VPE and Scattering Data (aka spectral methods)

 \star (static) soliton generates potential $V(r)$ for harmonic fluctuations $\psi_{\ell}(k,r)$

 \star scattering described by momentum dependent phase $\delta_{\ell}(k)$ in channel ℓ

$$
\star \text{ change in state density:} \qquad \Delta \frac{\delta n_{\ell}(k)}{\delta k} = \frac{1}{\pi} \frac{d}{dk} \delta_{\ell}(k) \qquad \text{(Krein formula)}
$$

 \star change in state density \longleftrightarrow change in energy: $E_{\text{VPE}} \sim$ (scattering part) $\int dk$ 2π ω_k \overline{d} $\frac{d}{dk}\delta_{\ell}(k)$ \star QFT derivation: matrix element of energy-momentum tensor & analytic properties of Green's functions

$$
E_{\text{VPE}}[V] = \sum_{\ell} D_{\ell} \Big[\sum_{j} \frac{\epsilon_{\ell j}}{2} + \int_{0}^{\infty} \frac{dk}{2\pi} \sqrt{k^2 + m^2} \frac{d}{dk} [\delta_{\ell}(k)]_N \Big] + E_{\text{FD}}^N[V] + E_{\text{CT}}[V]
$$

 \blacksquare

– D_{ℓ} degeneracy factor in ℓ -th partial wave e.g. $2\ell+1$

 $-\epsilon_{\ell j}$ bound state energies

 $- \ [\delta_\ell(k)]_N = \delta_\ell(k) - \delta_\ell^{(1)}$ $\ell_{\ell}^{(1)}(k)-\ldots-\delta_{\ell}^{(N)}$ $\ell^{\scriptscriptstyle{(IV)}}(k)$ phase shifts with first N -Born terms subtracted (expansion in V) \implies finite momentum integral (choose N large enough)

$$
-E_{\text{FD}}^{N}[V] = \left(\begin{array}{c} V^{(x)} & V^{(x)} & V^{(x)} \\ V^{(x)} & V^{(x)} & V^{(x)} & V^{(x)} \\ V^{(x)} & V^{(x)} & V^{(x)} & V^{(x)} \end{array}\right)
$$

(expansion of the effective action up to order N in $V(r)$)

 $-E_{CT}[V]$ counterterm contribution \Rightarrow standard renormalization conditions $E_{\rm FD}^N[V] + E_{\rm CT}[V]$ finite by renormalization

- \star Jost solution to scattering problem: $\lim_{x\to\infty} f(k, x)e^{-ikx} = 1$; analytic for $\text{Im}(k) \geq 0$
- \star Jost function: $F_{\ell}(k) = |F_{\ell}(k)| e^{i \delta_{\ell}(k)}$
	- -) from $f(k,0)$ and/or $f'(k,0)$
	- -) for real k : real part even, imaginary part odd
	- -) $F_{\ell}(i\kappa_j) = 0$ bound state wave-numbers

- \star integration in complex plane
	- -) semi-circle does not contribute because of Born subtractions
	- -) poles from $\frac{d}{dk} \ln(F(k))$ at $i\kappa_j$ cancel (explicit) bound state contribution
	- -) avoid cut from $\omega =$ √ $m^2 - t^2 = 0$ (*m* is smallest of all masses)

$$
E_{\text{VPE}} = \int_{m}^{\infty} \frac{tdt}{4\pi} W(t) \left[\nu(t) \right]_{N} + E_{\text{FD}}^{(N)} + E_{\text{CT}} \quad \text{with} \quad \left[\nu(t) \right]_{N} = \lim_{L \to \infty} \sum_{\ell=-L}^{L} \left[\ln(F_{\ell}(\text{id})) \right]_{N}
$$

$$
W(t) = \frac{2}{\sqrt{t^2 - m^2}} \quad \text{for} \quad D = 2 + 1 \quad \text{and} \quad W(t) = 1 \quad \text{for} \quad D = 3 + 1
$$

Classical ANO Vortex

 \star appearance of vortices

-) cosmic strings in $SU(2)$ electro-weak theory: Higgs and massive gauge bosons (frustration at interfaces of regions with different Higgs VEVs)

-) magnetic flux in a superconductor propto topological charge n type I: $E_n < nE_1$ vortices coalesce type II: $E_n > nE_1$ isolated, single vortices scalar field is order parameter for condensate of Cooper pairs

 \star model Lagrangian (scalar ED)

$$
\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu} \Phi|^2 - \frac{\lambda}{4} (|\Phi|^2 - v^2)^2
$$

$$
F_{\mu\nu} = \partial_{\mu} A_{\mu} - \partial_{\nu} A_{\mu} \quad \text{and} \quad D_{\mu} \Phi = (\partial_{\mu} - ieA_{\mu}) \Phi
$$

 \star mass parameters

$$
M_H^2 = \lambda v^2 \qquad \text{and} \qquad M_A^2 = 2v^2 e^2
$$

 \star profile functions for winding number *n*

$$
\Phi_S = vh(\rho)
$$
 and $\mathbf{A}_S = nv\hat{\boldsymbol{\varphi}}\frac{g(\rho)}{\rho}$ ($\rho = evr$)

 \star boundary conditions (in singular gauge) $h(0) = 0$, $g(0) = 1$ and lim $\rho \rightarrow \infty$ $h(\rho)=1\,,\quad \lim$ $\rho \rightarrow \infty$ $g(\rho)=0$

 \star numerical results (in units of v^2)

Higgs Fluctuations about ANO Vortex

- \star reveals singularities & paves way to renormalization
- \star singular gauge
	- -) vortex profiles approach vacuum configuration far away from the center \checkmark
	- singularity at center prevents Fourier transform \sharp (needed for Feynman diagrams)

 \star background potential outside realm for textbook proof on analyticity of Jost function

 \star Jost function not gauge invariant (in contrast to phase shift) quadratic divergence not excluded; encoded in $\nu(t) \longrightarrow$ const. as $t \longrightarrow \infty$ constant maybe dropped, as only $\frac{d\nu(t)}{dt}$ entered in the first place (Krein formula)

 $★$ fluctuation equation for $\phi \sim vh(\rho) + K_{|\ell|}(t\rho)\eta_{\ell}(\rho)$

$$
\frac{1}{\rho} \partial_{\rho} \rho \partial_{\rho} \eta_{\ell} = 2t Z_{\ell}(t\rho) \partial_{\rho} \eta_{\ell} + \frac{1}{\rho^2} \left[g^2(\rho) - 2\ell g(\rho) \right] \eta_{\ell} + V_H(\rho) \eta_{\ell} , \qquad Z_{\ell}(z) = \frac{K_{|\ell|+1}(z)}{K_{|\ell|}(z)} - \frac{|\ell|}{z}
$$

- \star standard fluctuation potential: $V_H(\rho) = 3(h^2(\rho) 1)$
- \star boundary conditions: $\lim_{\rho \to \infty} \eta_{\ell}(\rho) = 1$ and $\lim_{\rho \to \infty} \frac{d}{d\rho} \eta_{\ell}(\rho) = 0$
- \star immediate access to Jost function: $\nu_{\ell}(t) = \lim_{\rho \to 0} \ln (\eta_{\ell}(\rho))$
- \star Born series by iteration: $\nu_{\ell}(t) = 1 + \nu_{\ell}^{(1)}$ $\nu^{(1)}_\ell(t)+\nu^{(2)}_\ell$ $y_{\ell}^{(2)}(t)+\ldots$
- \star singularity at center from $\lim_{\rho\to 0} g(\rho) = 1$?

 \star superficially divergent one-loop diagrams (from expansion of the effective action) gauge invariance not manifest \implies need to consider all of them

vertices: \mathbf{A}_{S}^{2} $\boldsymbol{A}_S \cdot \boldsymbol{\nabla}$, V_H

straight lines: scalar field; curly lines: gauge field external lines: Fourier transform of vortex profiles

\star solely external scalar fields: standard treatment of scalar potential V_H : produces $\eta_\ell^{(1)}$ $\eta_\ell^{(1)}$ and $\eta_\ell^{(2)}$ $\ell^{(2)}$ in Born series (iterate wave-equation with $g(\rho) = 0$)

 \star without gauge invariance: potentially quadratically divergent diagrams with two gauge fields

gauge-variant, e.g. sharp cut-off regularization

$$
\frac{\Omega_D}{D}\frac{\Lambda^D}{\Lambda^2+m^2}\int d^4x\,A_\mu(x)A^\mu(x)+\mathcal{O}\left(\Lambda^{D-2}\right)
$$

has the same $\rho \rightarrow 0$ singularity as the Born approximation from the singular potential

$$
\int d^4x A_\mu(x) A^\mu(x) \quad \longrightarrow \quad 2\pi n^2 T L \int_{\rho_{\rm min}}^{\infty} d\rho \, \frac{g^2(\rho)}{\rho}
$$

 \star Born series for singular terms

•
$$
\eta_{\ell}^{(3)}
$$
: first order for $\left(\frac{g}{\rho}\right)^2$

•
$$
\eta_{\ell}^{(4)} + \eta_{\ell}^{(5)} - \frac{1}{2} \left(\eta_{\ell}^{(4)} \right)^2
$$
: first and second order for $\frac{\ell g}{\rho^2}$

 \star numerically confirmed

$$
\lim_{L \to \infty} \sum_{\ell=-L}^{L} \left\{ \eta_{\ell}^{(3)} + \eta_{\ell}^{(4)} + \eta_{\ell}^{(5)} - \frac{1}{2} \left(\eta_{\ell}^{(4)} \right)^2 \right\} \Bigg|_{\rho=\rho_{\min}} \to \int_{\rho_{\min}}^{\infty} \frac{d\rho}{\rho} g^2(\rho) + \mathcal{O}\left(\frac{1}{t}\right) \quad \text{as} \quad \rho_{\min} \to 0
$$

 \star alternatively, remove ultraviolet divergences that emerge from V_H and expect

$$
\nu_L(t)_L = \sum_{\ell=-L}^{L} \left\{ \ln \left(\eta_\ell \right) - \eta_\ell^{(1)} - \eta_\ell^{(2)} + \frac{1}{2} \left(\eta_\ell^{(1)} \right)^2 \right\} \Big|_{\rho=\rho_{\min}} - \int_{\rho_{\min}}^{\infty} \frac{d\rho}{\rho} g^2(\rho) \longrightarrow 0
$$

for $L, t \to \infty$ and $\rho_{\min} \to 0$

 \star limit $L \to \infty$ conceptually problematic for singular background (non-singular profiles work just fine) what is large L; perhaps $L \propto \langle \rho \rangle t$?

 \star typical test profile functions (kink & BPS for gauge field)

 \star indeed seems to converge to zero, though large L needed already at moderate t

 \star but wrong power law: suggests $\int dt t \left[\nu(t)\right]_L \leq \infty$? (should be log. divergent) already an issue in the context of fermions coupled to a QED vortex (Pasipoularides, hep-th/0012031; Graham et al., hep-th/0410171)

 \star gauge invariant treatment of Feynman diagrams (dimensional regularization)

-) red crosses vanish identically (odd numbers of gauge profile insertions)

- -) blue and green markers: ultraviolet divergences cancel
- -) pink boxes: already dealt with via $\eta_{\ell}^{(1)}$ $\eta_\ell^{(1)}$ and $\eta_\ell^{(2)}$ ℓ

 \star two gauge field insertions:

 \star contribution to VPE per unit length in dimensional regularization ($D = 4 - 2\epsilon$)

$$
E_{\rm VPE}^{(A)}\Big|_{\rm div.} = \frac{1}{12\epsilon (4\pi)^2} \int d^2x \, F_{\mu\nu} F^{\mu\nu}
$$

 \star standard wavefunction renormalization for gauge field

 \star scattering data analog of this logarithmic ultraviolet divergence:

$$
E_{\text{VPE}}^{(A)}\Big|_{\text{div.}} = \frac{1}{96\pi^2} \left[\int d^2x \, F_{\mu\nu} F^{\mu\nu} \right] \int \frac{l^2 dl}{\sqrt{l^2 + M^2}} \Big|_{\text{div.}} \qquad (M \text{ arbitrary})
$$

implies
$$
[\nu(t)]_L \longrightarrow \nu_{\text{Lf.}}(t) = \frac{n^2}{t^2} \frac{1}{12} \int_0^\infty \frac{d\rho}{\rho} g'^2(\rho) > 0 \quad \blacktriangleright
$$

 \star extrapolation needed

$$
[\nu(t)]_L = \nu_{\infty}(t) + \frac{c_1(t)}{L} + \frac{c_2(t)}{L^2} + \dots
$$
 as $\rho_{\min} \to 0$

- \star finally, correct asymptotic behavior but not yet renormalized
- \star standard procedure not applicable because Born series is ill-defined
- \star fake boson trick: generate scattering data with the correct asymptotic behavior and that can be identified with a log. divergent Feynman diagram $\overline{\nu}^{(2)}(t)$: summed second order Jost function from boson fluctuations scattering of a scalar potential $V_f(\rho)$

$$
E_{\text{VPE}} = \frac{1}{2\pi} \int_{m}^{\infty} t dt \, \left[\nu_{\infty}(t) - c_{B} \overline{\nu}^{(2)}(t) \right] + \quad \text{finite renormalization contributions}
$$
\n
$$
\text{(incl. } E_{\text{fb}}^{(2)})
$$
\n
$$
c_{B} = -\frac{n^{2}}{3} \frac{\int_{0}^{\infty} \frac{d\rho}{\rho} g'^{2}(\rho)}{\int_{0}^{\infty} \rho d\rho V_{f}^{2}(\rho)} \qquad \left[\overline{\nu}^{(2)}(t) \to -\frac{1}{4t^{2}} \int_{0}^{\infty} \rho d\rho V_{f}^{2}(\rho) \quad \text{as} \quad t \to \infty \right]
$$

VPE of ANO Vortex in BPS Scenario

 \star full theory in the BPS case $\lambda = 2e^2$ has (simple) scattering problem

 \star quantum fluctuations: $\Phi = \Phi_S + \eta$ and $A^{\mu} = A^{\mu}_S + a^{\mu}$

 \star gauge fixing for gauge fluctuations

$$
\mathcal{L}_{\text{gf}} = -\frac{1}{2} \left[\partial_{\mu} a^{\mu} + \text{i} e \left(\Phi_S \eta^* - \Phi_S^* \eta \right) \right]^2
$$

 \star Faddeev-Popov ghosts c

 $\mathcal{L}_{gh} = \overline{c} \left(\partial_{\mu} \partial^{\mu} + 2e^2 |\Phi_S|^2 \right) c + \text{ non-harmonic terms}$

 \star gauge fluctuations, a^{μ} : time-like & longitudinal (|| vortex) decouple from transverse modes

 \star ghost and decoupled gauge fluctuations partially cancel in E_{VPE} !

-) full cancellation occurs in $D = 3 + 1$ (Min & Lee, hep-th/9409006)

-) in $D = 2 + 1$ only one component canceled: simple additional scalar scattering problem (adds negatively to E_{VPE})

 \star additional divergent Feynman diagrams with gauge fluctuations

do not generate new singularities associated with $\rho \rightarrow 0$

 \star four gauge invariant counterterm structures

$$
C_g F_{\mu\nu} F^{\mu\nu} + C_h |D_\mu \Phi|^2 + C_0 (|\Phi|^2 - v^2) + C_V (|\Phi|^2 - v^2)^2
$$

 \star four conditions:

no-tadpole, two residues of propagators, Higgs mass ⇒ gauge field mass acquires quantum corrections its effect on E_{VPE} is two-loop order

Numerical Results

 $\star D = 2 + 1$

$$
E_{\text{CT}} + E_{\text{FD}} \begin{array}{|l|l|} n = 1 & n = 2 & n = 3 & n = 4 \\ \hline E_{\text{CT}} + E_{\text{FD}} & -0.2484 & -0.6546 & -1.0801 & -1.5215 \\ \hline E_{\text{scat.}} & -0.0882 & -0.3408 & -0.6631 & -1.0205 \\ \hline E_{\text{VPE}} & -0.3367 & -0.9955 & -1.7432 & -2.5420 \\ \hline E_{\text{VPE}}(n) \approx -0.3348 & -0.6314(n-1) - 0.0350(n-1)^2 \end{array}
$$

binding energies

$$
E_{\text{VPE}}(n) - nE_{\text{VPE}}(1) \approx -0.297(n-1) - 0.035(n-1)^2 < 0
$$

$\star D = 3 + 1$

binding energies

$$
E_{\text{VPE}}(n) - nE_{\text{VPE}}(1) \approx -0.070(n-1) < 0
$$

either case favors coalesced over isolated vortices

Summary

 \star (almost) no word about numerical subtleties

 \star consequences of singular vortex structure

- need to make contact with free Green's function requires singular gauge
- singular structure requires a non-dynamical *zeroth* order Born subtraction for Jost function
- *zeroth* order Born subtraction complies with gauge invariance (no quadratic divergence)
- slowly converging angular momentum sum requires extrapolation
- \star VPE of BPS vortex approximately scales with $(1 n)$, classical energy with n
- \star stabilization of BPS vortices with higher winding number by quantum corrections
- \star first study of VPE in a renormalizable soliton model in different topological sectors
	- relevant for binding energies in a particle interpretation of solitons
	- models in $D = 1 + 1$ lack localized static solutions with higher winding numbers
	- typically soliton models in higher dimensions are not renormalizable (Skyrme, NJL, ...)

Thank you for

your attention !