
Thermodynamic Potential of the Polyakov Loop in 

SU(3) Quenched Lattice QCD 

Abstract: 

Using SU(3) lattice QCD, we study the effective potential 

(thermodynamic potential) of the Polyakov loop at finite 

temperature in the field theoretical manner for the first time. 

We adopt SU(3) quenched QCD on a spatially large lattice 

of 643 x 6 at b = 5.89379, just corresponding to the 

critical temperature Tc of the deconfinement phase transition. 

From 200,000 gauge configurations, 

we numerically evaluate the effective potential using 

the reweighting method for the lattice QCD data around 

each vacuum of Z3-symmetric and Z3-broken vacua.

ICNFP2023, 21 July 2023, Zoom, OAC, Crete

H. Suganuma (Kyoto U.)

in collaboration with H. Ohata, M. Kitazawa (YITP, Kyoto U.)



Color Confinement and Chiral Symmetry Breaking are most 

important phenomena of Nonperturbative QCD. In particular, 

Confinement is a very curious phenomenon peculiar to QCD, 

and its understanding is still an extremely difficult problem. 

Introduction : Confinement and Polyakov loop

Lattice QCD result for Inter-quark potential 

G.S.Bali (2001)
Takahashi et al. (2002)
JLQCD (2003)



In finite temperature QCD, a standard order parameter of 

quark confinement is the Polyakov loop 〈P〉, 

defined as a path-ordered product along imaginary time:

Introduction : Confinement and Polyakov loop

The thermal expectation value of the Polyakov loop 〈P〉
is related to the single-quark free energy Eq. 

In the confinement phase, the Polyakov loop 〈P〉 is (almost) zero, because 

the single-quark energy is infinite Eq=∞, reflecting quark confinement. 

In the deconfinement phase, the Polyakov loop 〈P〉 takes a finite value, 

and the single-quark energy Eq becomes finite.

Order parameter of Confinement: Polyakov loop 〈P〉∝ e-Eq / T



In the lattice QCD formalism, 

the Polyakov loop is also an order parameter of ZNc center symmetry,

which relates to the spatially global transformation

of temporal link variables at a fixed time. 

Under the ZNc transformation, the lattice gauge action is invariant,

but the Polyakov loop P is variant and behaves as its order parameter. 

- The confinement phase is ZNc -symmetric owing to 〈P〉 = 0.

- In the deconfinement phase, ZNc center symmetry is 

spontaneously broken because of 〈P〉 ≠ 0. 

Introduction : Polyakov loop and ZNc center symmetry



Scatter plot of Polyakov loop

M. Goeckeler et al. 
Nucl. Phys. B 
Proc. Suppl. 94
(2001) 402.

Lattice QCD result of Polyakov Loop 〈P〉 at finite temperature

Z3-symmetric Confinement Phase Z3-broken Deconfinement Phase

Z3 center symmetric structure and 
its spontaneous breaking at high temperature

In spite of importance of Polyakov loop 〈P〉 in QCD, its thermodynamic 
potential has not been calculated directly from QCD before our study.



Field-theoretical Formalism
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For the  Polyakov loop P defined on Ls
3 x Lt lattice

We define the QCD generating functional including 

the source J of the Polyakov loop:
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we prepare source J of Polyakov loop

Here, the inner product denotes the spatial summation 

Basically, we derive Effective Potential (thermodynamic potential) 

of Polyakov loop using standard field-theoretical manner 

based on lattice formalism.
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Effective Potential of Polyakov loop is defined as its Legendre transformation 

in standard field-theoretical manner:
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Generating functional W for connected diagrams is defined as usual. 

Physically, its derivative with respect to source J

gives the expectation vale of Polyakov loop

Field-theoretical Formalism
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At finite temperature, the Effective Potential physically means

Thermodynamic Potential or Free Energy 

as function of Polyakov loop, 

and satisfies the following extremal condition:

Effective Potential 

(Thermodynamic Potential or Free Energy at finite temperature)
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Field-theoretical derivation of Effective Potential 
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As for W [J], it can be expressed with expectation value without source (J = 0) 

apart form an irrelevant constant:
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constant

Polyakov loop 〈P〉J in the presence of source J

can be also expressed with expectation value without source (J = 0):

In lattice QCD, physical quantities in the presence of source J can be 

calculated using expectation value without source (J = 0) by regarding the 

source factor exp(J・P) as an operator, which is called reweighting method.  
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Lattice QCD derivation of Effective Potential 
In the practical calculation in lattice QCD, we use the following procedure.

First, we numerically calculate the following expectation values without source 

(J = 0) using gauge configurations generated in lattice QCD:

Thus, we obtain Effective Potential of Polyakov loop apart from an irrelevant constant.
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Second, we calculate W [J] and expectation values of Polyakov loop 〈P〉J in 

presence of source J, using these expectation values without source (J = 0):
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Re Im( ) ( ) ( )J x J x iJ x + C



Lattice QCD setup

We use SU(3) quenched QCD with standard plaquette action 

on a spatially large lattice of 643 x 6 at b = 5.89379, 

which corresponds to the critical temperature Tc = 280MeV

of the deconfinement phase transition in quenched QCD. 

The lattice spacing is about a = 0.12fm. 

We use huge number of 200,000 gauge configurations

generated with usual Monte Carlo method based on 

pseudo-heat bath algorithm.

In lattice QCD, each of generated configuration represents 

typical QCD vacuum, and therefore these gauge configurations give 

“ensemble of thermal QCD vacuum”.

As for the Polyakov-loop source J=(JRe, JIm), 

we use 1001 different points.  



Lattice QCD result for Scatter Plot of Polyakov loop 〈P〉J=0 

Each point corresponds to the lattice gauge configuration.

T < Tc

〈P〉J=0 ~ 0
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Lattice QCD result for Scatter Plot of Polyakov loop 〈P〉J=0 

Each point corresponds to the lattice gauge configuration.

Critical 
Temperature 

T = Tc

At Critical temperature Tc, Confined and Deconfined Vacua coexist.

Caution: Naïve Averaging over all the data leads to 

Nonsense Zero Expectation Value !
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Histogram of Polyakov loop 〈P〉J=0 at Critical Temperature 

Z3-broken

Deconfined 

Phase

Z3-sym
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Two peaks indicate 

Coexistence of Confined and Deconfined Vacua

at Critical temperature Tc.
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Lattice QCD derivation of Effective Potential 

Caution: In the case of Coexistence of Vacua, 

dangerous naïve averaging has to be avoided.

Therefore, as a technical improvement,

around each vacuum of Z3-symmetric and Z3-broken vacua,

we use the corresponding lattice QCD data for the reweighting method.

Procedure:

1. For each lattice gauge configuration, we calculate Polyakov loop 〈P〉J=0.

2. For each lattice gauge configuration, 

we associate them with each vacuum 

among Z3-symmetric and Z3-broken vacua. 

3. Around each vacuum, 

using lattice QCD data associated to each vacuum, 

we numerically derive Effective Potential Veff[〈P〉] of Polyakov loop 〈P〉
with the reweighting method. 



1. Write Scatter Plot of Polyakov loop 〈P〉J=0 for lattice gauge configurations.
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Critical 
Temperature 

2. For each lattice gauge configuration, associate them with each vacuum

among Z3-symmetric and Z3-broken vacua. 

200,000 

lattice gauge 
configurations



Critical 
Temperature 

3. Around each vacuum, using lattice QCD data associated to each vacuum, 

we numerically derive Effective Potential Veff[〈P〉] with the reweighting method. 
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Effective Potential 
(thermodynamic potential) 

of Polyakov loop
(bird’s eye view)
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Effective Potential 
(thermodynamic potential) 

of Polyakov loop
(contour map)
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Summary and Conclusion

Using SU(3) lattice QCD, we have studied the 

effective potential (thermodynamic potential) of 

the Polyakov loop at finite temperature in the 

field theoretical manner for the first time. 

We have adopted SU(3) quenched QCD on a 

spatially large lattice of 643 x 6 at b = 5.89379, 

corresponding to the critical temperature Tc of the 

deconfinement phase transition. 

From 200,000 gauge configurations, we have 

numerically evaluated the effective potential using the 

reweighting method for the lattice QCD data around 
each vacuum of Z3-symmetric and Z3-broken vacua.



Thank you!
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