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We have found an infinite dimensional manifold of exact
solutions of the Navier-Stokes loop equation for the Wilson
loop in decaying Turbulence in arbitrary dimension d > 2.
This family of solutions corresponds to a fractal curve in
complex space Cd with random steps parametrized by Ising
variables σ = ±1. This one-dimensional periodic Ising
chain has some long-range interaction, leading to critical
phenomena as its size N → ∞. The Wilson loop, vorticity
correlation functions, and energy dissipation rate are
numerically simulated using an ensemble of 2 ∗ 105 curves,
each with N = 107 steps. We found anomalous dissipation
and some scaling laws with universal critical indexes,
different from K41.
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Richard Feynman wrote half a century ago in his famous
”Lectures in Physics”

”there is a physical problem that is common to many
fields, that is very old, and that has not been solved.
It is not the problem of finding new fundamental
particles, but something left over from a long time
ago—over a hundred years. Nobody in physics has
really been able to analyze it mathematically satisfac-
torily in spite of its importance to the sister sciences.
It is the analysis of circulating or turbulent fluids.”
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Introduction

The turbulence problem looks deceptively simple: find the limit
of the solution of the Navier-Stokes equations when vis-
cosity goes to zero at fixed energy flow into the system.

∂tvα = ν∂βωβα − vβωβα − ∂α

(
p+

v2β
2

)
; (1)

∂αvα = 0; (2)

In this limit, the Navier-Stokes equation tends to the Euler equa-
tion everywhere except some singular regions: vortex sheets and
lines, where large Laplacian could compensate the factor of ν.
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Introduction

The unsolved problem of classical turbulence has challenged us
for centuries, like a shining Himalaya peak.

Burgers, Onzager, Heisenberg, Landau, Kolmogorov, Feyn-
man, and many other great scientists attempted and failed
to reach the summit but blazed the trail for the next genera-
tions.

Ultimate goal

The ultimate goal of turbulence studies is to solve the
Navier-Stokes equations and determine why and how the
solution covers some manifold rather than staying unique given
initial data.

What are the properties of this manifold? If not Gibbs, what is
the probability distribution?
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Kolmogorov Legacy and the Ice Wall

Andrej Kolmogorov enlightened us 80 years ago by showing
the path to the summit of Turbulence, and we have all tried to
follow this path since then.

Kolmogorov’s Ice Wall

Unfortunately, this path led us to the ice wall, which defeated
all climbing attempts for the last half Century.

Some of us, in desperation, are throwing models against this wall
in the hope these models will stick.

They stick for some time, but then they all slide down.

There is no way around the Navier-Stokes equations, we
have to solve them.
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The quantum correspondence or Duality

Lucky Navier-Stokes equation

Some lucky nonlinear PDEs were solved by reduction to a linear
problem in a higher dimension. We claim such luck with the
Navier-Stokes equation. However, we must go up to an
infinite-dimensional loop space in this case.

Points in this space are closed loops in d− dimensional physical
space Rd, or the set of d periodic functions C⃗(θ), θ ∈ (0, 2π).

The linear problem is quantum mechanics in loop space.

As we have found in the 90ties, Mig93, this problem can be
further reduced to the nonlinear ODE in 1+1 dimensions.
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The Wilson loop average for the Turbulence

Ψ[C] =

〈
exp

(
ı

ν

∮
C
vαdrα

)〉
(3)

treated as a function of time and a functional of the periodic
function C : rα = Cα(θ); θ ∈ (0, 2π) (not necessarily a single
closed loop), satisfies the following loop equation

ı ν∂tΨ[C] = ĤΨ[C]; (4)

Ĥ = ı

∮
dC⃗(θ) · W⃗

[
δ

δC⃗(θ)

]
; (5)



Introduction

Decaying
Turbulence as
a fractal curve

Loop equation

Dimensional
Reduction

Random walk on a
circle

Correlation functions

Discussion

Loop equation

From NS to the Linear problem in Loop space

This is the heart of the matter. We reduced the statistics of
the nonlinear NS equation to the linear Schrödinger equation in
loop space.
Moreover, the operator W⃗ has no direct dependence on the
coordinate C; it only depends on the gradient in the loop
space. The solution is a superposition of plane waves

exp
(
ıP̂ · X̂

)
in loop space X̂ = C⃗(.).
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The area derivative operator corresponds to vorticity

ω̂αβ ≡ −ı ν
δ

δC ′
α(θ)

∫ ϵ

−ϵ
dξ

δ

δCβ(θ + ξ)
− {α ↔ β}; (6)

In addition to the loop equation, every valid loop functional F [C]
must satisfy the Bianchi constraint MMEq79, Mig83

∂αω̂βγ(r)F [C] + cyclic = 0 (7)

This constraint was analyzed in M23PR in the confinement re-
gion of large loops, where it was used to predict the Area law.
The area derivative of the area of some smooth surface inside a
large loop reduces to a local normal vector.

The origin of minimal surfaces in circulation theory

The Bianchi constraint is equivalent to the Plateau equation
for a minimal surface (mean external curvature equals zero).
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Dimensional Reduction

The crucial observation back in ’93 was that the right side of the
Loop equation, without random forcing, dramatically simplifies
in functional Fourier space. The dynamics of the loop field
can be reproduced in a simple Ansatz (plane wave in loop space):

Ψ[C] =

〈
exp

(
ı

ν

∮
dCα(θ)Pα(θ)

)〉
; (8)

∂tP⃗ = W⃗

[
−ı

ν
P⃗ ′(θ)

]
; (9)

ωαβ ⇒ −ı

ν
∆Pα(θ)Pβ(θ)− {α ↔ β} (10)

The equation becomes a PDE for P⃗ (θ). All functional derivatives
are gone!

The Bianchi constraint is identically satisfied with this Anzatz.
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Random walk on a circle

The time dependence can be readily found, as the operator W⃗
is a third-order homogeneous functional of P⃗ :

P⃗ (t, θ) =

√
ν

2(t+ t0)
F⃗ (θ); (11)

Comparing terms we find the following relations for F⃗ (θ) (gap
equations)

(∆F⃗ )2 = 1; (12a)(
2F⃗ ·∆F⃗ − ı

)2
+ 1 = 4F⃗ 2 (12b)

These relations are very interesting. The complex numbers
indicate irreversibility.
We need to find a family of solutions to this complex equation,
which would lead to a real velocity circulation.
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How could the complex curve describe a real circulation?

This is possible if the imaginary part of P⃗ (θ) does not
depend on θ. Such an imaginary term will drop after
integration over closed loop C⃗(θ).

We have found a family of such real circulation solutions
MB21 of our recurrent equation for arbitrary N .

F⃗k =

1

2
csc

(
β

2

)
Ω̂ ·
{
cos(αk), sin(αk)w⃗, i cos

(
β

2

)}
; (13)

Here w⃗ ∈ Sd−3 is an arbitrary unit vector, and Ω̂ ∈ O(d) is an
arbitrary rotation matrix.
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The loop equation is satisfied provided

F⃗k ⇒ F⃗k+1; (14)(
F⃗k+1 − F⃗k

)2
= 1; (15)(

F⃗ 2
k+1 − F⃗ 2

k − ı
)2

+ 1 =
(
F⃗k+1 + F⃗k

)2
; (16)

F⃗N = F⃗0; (17)
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Random walk on a circle

The angles αk must satisfy recurrent relation

αk+1 = αk + σkβ; (18)

αN = α0 = 0; (19)

σ2
k = 1 (20)

This sequence with arbitrary signs σk = ±1 solves recurrent
equation (14).
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The closure condition requires certain relations between these
numbers.

The main condition is that β must be a rational fraction of
2π:

β =
p

q
∗ (2π); 0 < p < q < N ; (21)

(N − q) (mod 2) = 0 (22)
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In that case, the periodic solution for αk will correspond to the
following set of σk

σ = {1, . . . , 1,−1, . . . ,−1}perm; (23)

This array has N+ positive values and N− negative values where

N± =
N ± q

2
; (24)

N+ +N− = N ; (25)

N+ −N− = q; (26)

Duality of turbulence

This simple statistical model describes a dual geometric theory
of decaying Turbulence, similar to ADS/CFT duality. There are
no approximations; this model exactly solves the loop
equations.
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Correlation functions

In this section, we only consider the three-dimensional space
we live in.

The simplest observable quantities we can extract from the loop
functional are the vorticity correlation functions M23PR, cor-
responding to the loop C backtracking between two points in
space r⃗1 = 0, r⃗2 = r⃗, see Fig.19.

The vorticity operators are inserted at these two points.
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The correlation function reduces to the following average over
the ensemble of our random curves in complex space〈

ω⃗(⃗0) · ω⃗(r⃗)
〉
=

1

4(t+ t0)2

∑
0≤n<m<N〈

ω⃗m · ω⃗n

(N(N − 1)/2)
exp

 ır⃗ ·
(
S⃗n,m − S⃗m,n

)
2
√
ν(t+ t0)

〉 ; (27)

S⃗m,n =

∑n
m F⃗k

n−m (mod N)
; (28)

The averaging ⟨. . . ⟩ in these formulas involves group integra-
tion

∫
O(3) dΩ with F⃗k ⇒ Ω̂ · F⃗k.
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The imaginary part of our solution (13) does not depend on
the point on a circle. Therefore it contributes a constant term
into S⃗m,n which cancels in the difference S⃗n,m − S⃗m,n in the
exponential, as it should.

The resulting integral over rotation matrix Ω ∈ O(3) is a partic-
ular case of the famous Itzykson-Zuber-Harish-Chandra inte-
gral. There is a simple analytical formula∫

O(3)

dΩ

|O(3)|
exp

(
ır⃗ · Ω̂ · s⃗

)
=

sin (|r⃗||s⃗|)
|r⃗||s⃗|

(29)
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Correlation functions

The numerical simulation of this correlation function does not
require significant computer resources. This is like a sim-
ulation of a one-dimensional Ising model with long-range
forces.

We simulated N = 107 points on a fractal curve with the ran-
dom fraction in β = 2π p

q and random signs σk adding up to
a multiple of q, with q being the same parity as N .

We took T = 2∗105 random data samples for β, ω⃗n · ω⃗m, |∆S⃗| ,
where ∆S⃗ = S⃗n,m − S⃗m,n with randomly chosen 0 ≤ n < m <
N .

We collected large statistics needed for the correlation func-
tion.
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The distributions of β for various N are all approximately linear
and matching.
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The distribution of the length of the difference of average F⃗
vectors in a log-log scale for various N
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The cloud of points ∆S, ω⃗m · ω⃗n, in a log-log scale for various
N .
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The distribution of the difference ∆S =
∣∣∣S⃗n,m − S⃗m,n

∣∣∣ on
Fig.24 is a power law

W (∆S > x) ∝ x−β; (30)

β ≈ 0.8 (31)

We measured the dependence between∆S, ω⃗m ·ω⃗n in a scattered
log-log plot (Fig.25). The results are consistent for four different
values of N = 10M . . . 40M :

ω⃗m · ω⃗n ∝ (∆S)µ; (32)

µ ≈ 1.25 (33)

Our complex curve is a fractal, indeed!

We did not tune any parameters in our statistical model, just
increased its size N . Still, there are fractal scaling laws.
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After that, the correlation can be computed analytically using
these scaling laws ( with ρ = r√

2νt
)

〈
ω⃗(⃗0) · ω⃗(r⃗)

〉
∝ 1

t2

∫ ∞

0
ds

sin(ρs)

ρs
sµ−β−1 =

− 1

t2
ρβ−µ cos

(
1

2
π (β − µ)

)
Γ (−β + µ− 1)

∝ 1

t2

(
νt

r2

)0.225

(34)

Anomalous dissipation

Remarkably, this vorticity correlation function diverges at
r⃗ → 0, corresponding to anomalous dissipation.
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This scaling index −2 ∗ 0.225 ≈ −0.45 is far from −4
3 , but it

only applies to decaying turbulence.

The simulation took less than an hour on the Linux workstation
for N = 1M, 2M, 3M, 4M . We can go for N = 1Bn on a
cluster, as our algorithm complexity grows linearly with N .

The experimental data and simulations indicate a power decay
of the dissipation rate E ∼ t−1−n with n ≈ 1.2 in contrast with
our n ≈ 0.78.

No match with experiment so far

We cannot explain this discrepancy: perhaps our asymptotic
regime has not yet been observed. It is also premature to
compare our simulations on a personal workstation with an
experiment: the large-scale cluster simulation is needed.
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Discussion

We have presented an exact solution of the Navier-Stokes
loop equations for the Wilson loop in decaying Turbulence,
reducing fluctuating velocity field in d dimensions to the fractal
curve in 2d dimensions.

Is it THE solution? Time will tell

Our solution is universal, rotational, and translational invariant.
It has all the expected properties of isotropic decaying
Turbulence.
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