Recent LHCb results on heavyion and fixed-target data

Camilla De Angelis University and INFN Cagliari on behalf of the LHCb collaboration

camilla.de.angelis@cern.ch

XII International Conference on New Frontiers in Physics 10-23 July 2023, OAC, Kolymbari, Crete, Greece

THE LHCb DETECTOR

Single arm forward spectrometer with **unique coverage 2** < η < 5

[JINST 3 (2008) S08005] [IJMPA 30 (2015) 1530022]

Vertex Detector(VELO)

decay time resolution: 45 fs

reconstruct vertices

IP resolution: 20 μm

- Designed for heavy-flavour physics, now a general purpose experiment
- Forward and backward coverage for asymmetric beams

SMOG

Fixed-target system!

Dipole Magnet bending power: 4 Tm

Camilla De Angelis - 14/07/2023 - ICNFP2023

RICH detectors

 $K/\pi/p$ separation ε(K→K) ~ 95 %, mis-ID $\epsilon(\pi \rightarrow K) \sim 5\%$ Muon system μ identification $\epsilon(\mu \rightarrow \mu) \sim 97 \%$, mis-ID $\varepsilon(\pi \rightarrow \mu) \sim 1-3 \%$

RUN2 CONFIGURATION

10-300mrad

Tracking system momentum resolution $\Delta p/p = 0.4\% - 0.8\%$ (5 GeV/c - 100 GeV/c)

Calorimeters energy measurement e/y identification $\Delta E/E = 1 \% \oplus 10 \%/VE (GeV)$

Track reconstruction down to $p_T = 0$

LHCb DETECTOR IN RUN3

[LHCb-TDR-12]

Camilla De Angelis - 14/07/2023 - ICNFP2023

UPGRADE I

RUN3 CONFIGURATION

LHCb EXPERIMENTAL SET-UP

• Large variety of colliding system other than *pp*:

RUN2 SAMPLES

(SMOG)

Camilla De Angelis - 14/07/2023 - ICNFP2023

kinematical region accessible!

OVERVIEW OF LHCb RECENT HEAVY-ION RESULTS

*p*Pb/ Pb*p* collisions

- Ξ_c^+ production in *p*Pb collisions at $\sqrt{s} = 8.16 \text{ TeV}$ Arxiv:2305.06711 submitted to PRL
- Prompt D^+ , D_s^+ production in pPb collisions at $\sqrt{s} = 5$ TeV LHCb-PAPER-2023-006. in preparation
- Prompt D^0 nuclear modification factor in *p*Pb collisions at $\sqrt{s} = 8.16$ TeV

Arxiv:2205.03936, accepted by PRL > π^0 production in *p*Pb collisions at $\sqrt{s} = 8.16 \, \text{TeV}$ Arxiv:2205.10608, accepted by PRL

Camilla De Angelis - 14/07/2023 - ICNFP2023

PbPb collisions

- Coherent charmonium production in UPC PbPb collisions at $\sqrt{s} = 5$ TeV ArXiv:2206.08221. submitted to JHEP
- Λ_c^+ to D^0 production cross-section ratio in peripheral PbPb collisions JHEP06(2023)132

p-gas fixed-target collisions

Charmonium production in *p*Ne collisions at $\sqrt{s} = 68.5 \text{ GeV}$

Arxiv:2211.11633,arxiv: 2211.11645, submitted to EPJC

Pb-gas fixed-target collisions

•
$$J/\psi$$
 and D^0 production in
 $\sqrt{s} = 68.5$ GeV PbNe collisions

Arxiv: 2211.11652, submitted to EPJC

pPb and Pbp collisions

Camilla De Angelis - 14/07/2023 - ICNFP2023

• **Forward** region: 1.5 < y* < 4.0 • *p*Pb (2013) @ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ \rightarrow L ~ 1.1 nb⁻¹ • *p*Pb (2016) @ $\sqrt{s_{NN}}$ = 8.16 TeV \rightarrow L ~ 12.5 nb⁻¹ Pb • **Backward** region: -5.0 < y* < -2.5 • Pbp (2013) @ $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ \rightarrow L ~ 0.4 nb⁻¹ • Pbp (2016) @ $\sqrt{s_{NN}}$ = 8.16 TeV

 \rightarrow L ~ 17.4 nb⁻¹

Ξ_c^+ PRODUCTION IN pPb COLLISIONS AT $\sqrt{s} = 8.16$ TeV

- First measurement of this baryon in heavy-ion collisions: $\Xi_c^+ \to p K^- \pi^+$
 - of p_T and y^*
- - factorisation scales
 - Better agreement with factorisation scale $0.5\mu_0$

Camilla De Angelis - 14/07/2023 - ICNFP2023

Arxiv:2305.06711 submitted to PRL

- measurements at mid rapidity

D^0 PRODUCTION IN pPb COLLISIONS AT $\sqrt{s} = 8.16$ TeV

Measurements of D⁰ nuclear modification factor important to disentangle charmonia and open charm effects

Suppression observed consistent with 5 TeV result

In agreement with nPDF and CGC predictions Camilla De Angelis - 14/07/2023 - ICNFP2023

Arxiv:2205.03936 accepted by PRL

- **Data lower than nPDF at high** p_T
- Additional effects?

First π^0 measurements in forward rapidity at LHC $\pi^0 \rightarrow \gamma\gamma$

Forward:

- More precise than nPDF calculation
- Consistent with charged hadrons

Backward:

- Enhancement above nPDFs
- Lower than charged hadrons, mass ordering effects?
- Open the route to direct photon production measurements

Camilla De Angelis - 14/07/2023 - ICNFP2023

 π^0 PRODUCTION IN pPb COLLISIONS AT $\sqrt{s} = 8.16$ TeV

Arxiv:2204.10608, accepted by PRL

BACKWARD

FORWARD

CHARMONIUM PRODUCTION IN UPC PbPb AT $\sqrt{s} = 5 \,\mathrm{TeV}$

coherent photo-production

- Ultra-peripheral lead-lead collisions:
 - $\blacksquare \text{ Impact parameter } b > R_A + R_B$

- The most precise measurement of the coherent J/ψ
- First coherent $\psi(2s)$ forward measurement at LHC
- **Reasonable description** of data by models based on nPDF/CGC
- J/ψ uncertainty much smaller than the spread of theoretical curves

Camilla De Angelis - 14/07/2023 - ICNFP2023

ArXiv:2206.08221. submitted to JHEP

Coherent charmonia produced by interaction between photon and pomeron

Probe for the gluon density distribution functions

$\Lambda_c^+ \text{AND } D^0 \text{ IN PERIPHERAL PbPb AT } \sqrt{s} = 5 \text{ TeV}$

First measurement of the ratio Λ_c^+/D^0 in PbPb at forward rapidities

Important to probe the c-quark hadronization

- Results consistent with previous LHCb measurements in pPb collisions at the same energy
- Agreement with PYTHIA8 vs. p_T simulations including colour reconnection
- Tension with the Statistical Hadronization Model
- Need more data to understand charm hadronization

Pbpb collisions run3

RUN3 CONFIGURATION

No saturation up to 30% centrality!

EDETARGE

FIXED TARGET COLLISIONS AT LHCb: SMOG

SMO No pip

• Unique kinematical region accessible

$$\sqrt{s_{NN}} \sim \sqrt{2E_N M_N} =$$

Investigates the **high-**x of the nucleon target at **intermediate** Q^2

- **SMOG**: System for Measuring Overlap with Gas
 - **Noble gases (He, Ar, Ne) injected** into the LHC beam pipe around the Interaction Point (IP), $P \sim 10^{-7}$ mbar
 - \blacktriangleright Highest-energy fixed-target experiment ever built \rightarrow bridge between the SPS and LHC energies

CHARMONIUM IN pNe COLLISIONS AT $\sqrt{s} = 68.5$ GeV

QGP formation

(2S) to J/ψ production ratio as a function of the target nuclei

• Good agreement with other fixed-target experiments at lower energies and different atomic mass number A

Camilla De Angelis - 14/07/2023 - ICNFP2023

Arxiv:2211.11633, arxiv: 2211.11645, submitted to EPJC

- Charmonium production good probe for QCD $\rightarrow c\bar{c}$ bound state suppression is one of the smoking guns of
- >pA collisions are crucial to study CNM (Cold Nuclear Matter) effects which can mimic QGP presence in AA
 - Data in agreement with Vogt's predictions but not sensitive to Intrinsic
 - HELAC-Onia simulations underestimate the cross section

J/ψ AND D^0 PRODUCTION IN PbNe COLLISIONS AT $\sqrt{s} = 68.5$ GeV 19

 J/ψ and D^0 behave differently in the medium

D^0 production

good reference for the total charm crosssection

► <u>J/ψ and D⁰ invariant mass distributions</u>

- Comparison of the $J/\psi/D^0$ ratio between PbNe and pNe
 - J/ψ is affected by additional nuclear effects with respect to D^0 , but the suppression trend is **similar from pNe to PbNe** in largest N_{coll} bin

FIXED TARGET COLLISIONS AT LHCb: SMOG2

- SMOG2: gas confined in a 20 cm long storage cell
- Higher areal density than SMOG (luminosity) increased up to $\sim x 100$)
- Wider choice of gases to be injected: H₂, D₂, He, Ne, N₂, O₂, Ar, Kr, Xe
- **Data taken simultaneously in** *pp* **and** *pA* **modes**

Data collected in November 2022:

- Independent interaction point between pp and pA
- Same resolution of the spectrometer for the two collision modes
- **Camilla De Angelis 14/07/2023 ICNFP2023**

RUN3 CONFIGURATION

180

100

20

 $M [MeV/c^2]$

FIXED TARGET COLLISIONS AT LHCb: SMOG2

- SMOG2: gas confined in a 20 cm long storage cell
- Higher areal density than SMOG (luminosity increased up to ~ x 100)
- Wider choice of gases to be injected: H₂, D₂, He, Ne, N₂, O₂, Ar, Kr, Xe
- **Data taken simultaneously in** *pp* **and** *pA* **modes**
- **Data collected in November 2022:**
 - Ar injection, 18 minutes of data taking:
 - **443** J/ψ and **4200** D^0 (similar to SMOG with 170h of data taking)
- Camilla De Angelis 14/07/2023 ICNFP2023

RUN3 CONFIGURATION

LHCb DETECTOR UPGRADE II CERN-LHCC-2021-012; LHCB-TDR-023

UPGRADE I (NOW)

PHASE II IN A NUTSHELL

LHCspin project: R&D has started!

- Compact dipole magnet static \rightarrow transverse field.
- Superconductive coils + iron yoke configuration fits in the space constraints.
- B = 300 mT, $\Delta B/B \simeq 10$ %, with polarity inversion.
- Achievable Luminosity (HL-LHC): $\sim 8 \times 10^{32} \, cm^{-2} \, s^{-1}$

CONCLUSIONS

- Many interesting results shown coming from LHCb Run2
- LHCb partecipate in heavy-ion collisions in a successful way
- Only fixed-target experiment at LHC

Many more results will come with Run3 data!

No saturation up to 30% centrality! **Camilla De Angelis - 14/07/2023 - ICNFP2023**

25

18 mins of data taking!

D^0 PRODUCTION IN pPb COLLISIONS AT $\sqrt{s} = 8.16$ TeV

- Use experimental proxies for x and Q^2
- Data consistent at 5 and 8 TeV
- Trend seems smooth over wide x range
- nPDF undershoot the data at large x_{exp} and Q_{exp}^2

Arxiv:2205.03936, accepted by PRL **27**

 $Q_{exp}^2 \equiv m_{D^0}^2 + p_T^2$

 $x_{exp} \equiv 2 \frac{Q_{exp}}{\sqrt{s_{NN}}} e^{-y^*}$

CHARMONIUM PRODUCTION IN UPC PbPb AT $\sqrt{s} = 5 \text{ TeV}$

- **Ultra-peripheral lead-lead collisions:**
 - Impact parameter b > R_A + R_B
 - **Coherent charmonia** produced by interaction between photon and pomeron
 - Probe for the gluon density distribution functions

coherent photo-production

Comparison with ALICE and CMS results

