

CMS searches for exotic signatures

Eirini Tziaferi National and Kapodistrian University of Athens (NKUA)

on behalf of the CMS collaboration

XII International Conference on New Frontiers in Physics 10-23 July 2023, OAC, Kolymbari, Crete, Greece

Introduction: SM successful ... but incomplete

Hierarchy Problem:

> Why is $M_{Pl}/M_{EW} \sim 10^{17}$?

Unification of Gauge couplings:

- Why are gauge couplings so different, are they unified at a higher scale?
- Are there more forces in nature?

Origin of generations:

- Why do quarks and leptons come in three generations?
- Are they elementary particles?

Gravity: SM describes 3 of the 4 fundamental interactions at the quantum level (microscopically) but gravity is only treated classically.

Dark matter:

What is 25% of the Universe made off, and how does it interact with ordinary matter?

CP Violation:

- What is the origin?Neutrino masses:
- What is the origin and nature of m,?

Introduction

- The shortcomings of the SM motivates a **comprehensive program of searches for beyond-the-SM (BSM) physics** at high energy colliders.
- Many BSM models describe new phenomena in the **final states with** gluon, light and heavy flavor jets, leptons, and heavy bosons.
- A selection of analyses with the aforementioned final states, which became public very recently, will be presented.
 - All analyses used data from full Run II (2016-2018) with an integrated luminosity of 138 fb⁻¹.
 - They belong to the physics analysis groups of CMS: EXOTICA (EXO public results) and B2G (B2G public results).

Trijet searches

Physics Briefing

CMS-EXO-22-008

5

Trijet searches

Analysis Criteria:

- 3 wide (for recovering FSR) AK4 jets in the tracker coverage
- Δη (between any of the 3 wide jets)<1.6 to suppresses QCD (t-ch.) and enhance signal (s-ch.).
- Trijet invariant mass,m_{jjj}, above a certain threshold to be fully trigger efficient (different for 2016 vs. 2017,2018).

Main backgrounds:

Multijet QCD production estimated with a data-driven method using several smoothly falling empirical functions.

 Discrete profiling (envelope) method to incorporate difference between background function forms.

Bump hunt search on m_{iii} distribution.

Trijet searches

- The current data set does not provide sufficient sensitivity to constrain the Z_{R}
- At ρ_m =0.2, a similar level of sensitivity is achieved to that of a previous CMS search (trijets boosted) for the 3g decay mode.

CL [fb]

at 95%

(p(pq))V ←

σB

10³

10²

10 <u>•</u>

10-1

10-2

10-3

LQs in I-q collisions

- First search using LQs produced from leptonquark collisions.
- **Precise signal modeling** made possible by recent [1,2] lepton PDF calculations at NLO with relatively small uncertainties.

Signal characteristics:

- Jet and lepton back-to back → handle to reduce backgrounds
- Second lepton soft and forward → no combinatoric problem to reconstruct LQ mass

Experimental signature:

3 final states

- 1 central high-pT τ : reconstructed as τ_h , e, or μ (trigger object)+1 high pT jet
- Veto events with additional leptons (complementarity to single/pair production).

Bump hunt: search for narrow peak in lepton-jet mass distribution.

7

LQs in I-q collisions

Main backgrounds:

- W + jets, DY, VV, single top, ttbar estimated from simulation and normalized to their theoretical cross sections.
- QCD multijet, where a jet is mis-reconstructed, estimated with a "Fake Rate" method.

- LQ mass distribution reconstructed from τ, jet, and MET with collinear assumption.
- Two categories based on "b-tag" of leading jet.
- BDT score: trained with variables independent from LQ mass and jet flavor.

LQs in I-q collisions

- Limits are competitive with those set using other production modes at high mass and coupling values for $b\tau$ couplings
- Limits on the couplings of LQs to light-flavor quarks and τ leptons are set for the first time.
- **Probing multi-TeV LQ phase-space** otherwise inaccessible for direct 9 production at the LHC.

High mass µµ resonances with b quarks

Signal Models:

- $Z' \rightarrow \mu\mu$ in association with ≥ 1 b-jet
- Z' coupling to b & s quarks

Experimental Signature:

Pair of high pT μ 's + at least 1 b jet

Main background:

- DY (suppressed by b-jet requirement: $N_{b} \ge 1$)
- ttbar (suppressed by $m_{\mu\nu} > m_{top}$ requirement)
- other sub-dominant sources reduced by vetoing events
 - \succ with any additional μ
 - > with isolated track

CMS-EXO-22-016

High mass $\mu\mu$ resonances with b quarks

 Background parametrization:

by analytic functions (exponential, power law & bernstein polynomials)

- Discrete profiling (envelope) method to incorporate difference between background function forms.
- **Signal parametrization:** by Double-sided Crystal Ball + Gaussian
- Bump hunt search on m_{μμ} distribution

High mass µµ resonance with b quarks

Model-independent limits on the number of events with b quark jets.

- Easily re-interpretable for any neutral resonance model.
- Vary relative fraction of events in N_b ≥ 2 category, f_{2b} ⇒ Probe different signal hypotheses.

Note for this plot: $g_{\ell} = g_{\nu} = g_{b}$ (scales both $Z \rightarrow bb$ and $Z \rightarrow sb$ interactions)= 0.05 and δ_{bs} (scales only $Z \rightarrow sb$ interactions)= 0

High mass µµ resonance with b quarks

- Interpretation for the simplified **lepton flavor-universal model** $(g_{\ell} = g_{\nu})$
 - > Narrow-width resonance \Rightarrow Restrict to parameter space where $\Gamma_{z'} < 0.5 \sigma_{mass}$
- Set constraints on $B_3 L_2$ model
 - $g_{z'}$ = coupling of Z' to SM fermions
 - θ_{23} = mixing angle btw. 2nd and 3rd generation quarks
- Most of the allowed parameter space is excluded for a Z' with a mass \leq 500 GeV. The constraints are less stringent for higher Z' mass hypotheses.

$W' \rightarrow tb$ in leptonic final states

CMS-B2G-20-012

Signal Models:

- Models with W' bosons couple to 3rd generation fermions → could be involved in the explanation of b physics flavor anomalies.
- Hypotheses: width ($\Gamma_{w'}/m_{w'}$ of 1, 10, 20 and 30%) and chirality (L, R-handed, or a combination of the two) to allow for interpretation in a wide array of models.

Experimental Signature:

- 1 lepton (μ/e) passing the "mini-Isolation" requirement, 2 high energetic jets, MET
- Top reconstructed with lepton, MET, and a jet.
- W' reconstructed with the reconstructed top and a jet.

3 Signal Regions (SR): $N_b = 1$ (depending on whether the AK4 jets that are b tagged are used as jet_{top} or jet_w), ≥ 2 .

Main background:

ttbar (suppressed by vetoing events with additional leptons), single top, W+jet, QCD are estimated from dedicated control regions through transfer factors.

$W' \rightarrow tb$ in leptonic final states

Numbers in red represent values of the excluded xsections < theoretical ones.

 $\sigma(pp \rightarrow tb) [pb]$

LLPs searches with New at ICNFP 2023 muon detector showers EXO-21-

Covers **decays far away from IP** (sensitive to large ct), complementary to searches using decays in the tracker region.

Signal Models:

While is a model independent search the results are interpreted in two models.

Experimental Signature:

- Large cluster of hits (>100 hits) in the muon system which acts as a sampling calorimeter: sensitive to a broad range of decays: quarks, taus, photons, electrons.
- High MET $\& \ge 1$ jet

LLPs searches with New muon detector showers

Event categories (more sensitive to large, intermediate and low $c\tau$):

- Single DT cluster
- Double clusters (DT-DT, CSC-CSC, DT-CSC)
- Single CSC cluster (no change wrt EXO-20-015)

Main background:

punch-through jets, μ 's that undergo bremsstrahlung, and isolated hadrons from pileup, recoils, or underlying events \rightarrow datadriven ABCD method for background estimation.

High cluster reconstruction efficiency throughout the detector.

Advantages over searches that employ displaced vertices:

- Excellent background suppression from shielding material \rightarrow allow detection of single LLP decay
- The calorimetric nature of the particle shower is not sensitive to the LLP mass => this search is equally sensitive to all LLP masses considered.

LLPs searches with muon detector showers

- We interpret the search result in **9 different decay modes** with hadronic shower $(b\bar{b}, d\bar{d}, K^+K^-, K^0K^0, \pi^+\pi^-)$, EM shower $(\pi^0\pi^0, \gamma\gamma, e^+e^-)$, or both $(\tau^+\tau^-)$
- Achieve first sensitivity to sub-GeV mass LLPs at BR (H → SS) = 10⁻³ level.
- Achieve first sensitivity to dark shower model produced from Higgs decay at BR (H $\rightarrow \Psi\Psi$) = 10⁻³ level.

Analyses with the first Run 3 data

The long-awaited **LHC Run 3 started** in July 2022 delivering proton-proton collisions at the **energy of 13.6 TeV**.

CMS recorded and certified high quality physics data:

- in 2022, ~35 fb⁻¹
- in 2023, ~10 fb⁻¹ and keep collecting as we speak.

There are already **analyses using the first Run 3 data**, the so-called high priority analyses. Among them are analyses that:

- have been performed before and a level of sensitivity similar to Run 2 can be reached fast
- with a localized excess in the Run 2 data
- → with significant signal cross-section increase from 13 \rightarrow 13.6 TeV
- > with improved triggers for the long lived searches

Analyses with the first Run 3 data

138 fb⁻¹ (13 TeV)

PowExp-5p fit

Dijet-5p fit

5 6 78

Examples of high priority analyses with the first Run 3 data searching for exotic signatures:

۶ DiJet resonances: $X \rightarrow 2$ jets

Both CMS and ATLAS are seeing a clustering of events at high mass.

Paired Dijet resonances ≻

Analyses with the first Run 3 data

Examples of high priority analyses with the first Run 3 data searching for exotic signatures:

> Diboson resonances: $X \rightarrow ZV$

> Displaced-jets

Yector-like top quark: T' → tH

 $\succ W_{R} \rightarrow HNL$

Summary

- There is a very rich program for BSM physics at CMS performing generic searches and testing many models of new physics. Many interesting results with Run II data are imminent.
- Searches for exotic signatures in CMS were presented:
 - No significant deviations from SM so far but some excesses to keep an eye and to drive us where to look next.
 - Constraints in several benchmark models.
- Significant **improvements** due to
 - Data driven methods to estimate the background.
 - Increased luminosity with full Run II datasets.
 - New final states are explored.
- Hope that with all the improvements and advancements on reconstruction, trigger, analysis approaches and techniques, we should be able to fully exploit the Run 3 discovery potential and either make a discovery, or improve limits beyond luminosity scaling.

Thank you!

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "1st Call for H.F.R.I. Research Projects to support Faculty Members & Researchers and the Procurement of High-and the procurement of high-cost research equipment grant" (Project Number: 16576).

Back up

High mass $\mu\mu$ resonance with b quark jets

$$\mathcal{L}_{BSM} = Z'_{\eta} \left\{ g_{\ell} \sum_{f=e,\mu,\tau} \bar{f} \gamma^{\eta} P_{L} f + g_{\nu} \sum_{f=\nu_{e},\nu_{\mu},\nu_{\tau}} \bar{f} \gamma^{\eta} P_{L} f \right. \\ \left. + g_{b} \left[\overline{b} \gamma^{\eta} P_{L} b + \delta_{bs} \left(\overline{s} \gamma^{\eta} P_{L} b + h.c. \right) \right] \right\}.$$

$W' \rightarrow tb$ in leptonic final states

At parton level

dominated by the SM s-ch. production of a tb quark pair.

For large decay widths the tail towards small masses is dominant because of offshell W' production

LLPs searches with muon detector showers

