

XII International Conference on New Frontiers in Physics 10-23 July 2023, OAC, Kolymbari, Crete, Greece

The Muon Detector of the LHCb experiment at Upgrade II

Alessandra Pastore (INFN Bari) on behalf of the **LHCb Collaboration**

Outline

- The Large Hadron Collider beauty
- LHCb performance in LHC Run1 and 2
- LHCb Upgrades
- The Muon System and its future upgrade

The Large Hadron Collider beauty

a dedicated **b**-physics experiment at LHC originally designed for a precise test of the SM and search of New Physics beyond it through the study of very rare decays of b-(and c) hadrons

Extended physics program to QCD, EW, direct searches and heavy ion runs C. De Angelis, Jul 14, 2023

The Large Hadron Collider beauty

a dedicated **b**-physics experiment at LHC originally designed for a precise test of the SM and search of New Physics beyond it through the study of very rare decays of b-(and c) hadrons

Extended physics program to QCD, EW, direct searches and heavy ion runs

a few examples ...

LHCb performance in LHC Run 1 and 2

Excellent detector performance in Run1 and 2 of LHC:

- running at 2x design luminosity, 9 fb-1 collected in total
 - ~ 1.5 interactions/bunch crossing

- $\Delta p/p \sim 0.5\%$ below 20 GeV/c, ~ 1% at 200 GeV/c
- impact parameter resolution IP ~ $(15+29pT[GeV]) \mu m$
- decay time resolution $\sigma_t \sim 45$ fs for $Bs \rightarrow J/\psi \varphi$
- PID efficiency (mis ID prob.): $e \sim 90\%$ ($e \rightarrow h \sim 5\%$),
 - k ~ 95% (π→ K ~ 5%), μ ~ 97% (π→ μ 1-3%)

Upgrading LHCb

beyond Flavor Physics, from exploration studies to precision studies

Observable	Current LHCb	Upgrade I	Upgrade II	
	$(up to 9 fb^{-1})$	$(50{\rm fb}^{-1})$	$(300{\rm fb}^{-1})$	0
CKM tests				0
$\gamma \ (B \to DK, \ etc.)$	4°	1°	0.35°	2
$\phi_s \ \left(B^0_s \to J/\psi \phi \right)$	$32\mathrm{mrad}$	$10\mathrm{mrad}$	$4\mathrm{mrad}$	ŀ
$ V_{ub} / V_{cb} \ (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.)$	6%	2%	1%	(
$a^d_{ m sl}~(B^0 o D^- \mu^+ u_\mu)$	$36 imes 10^{-4}$	$5 imes 10^{-4}$	$2 imes 10^{-4}$	
$a_{ m sl}^s \ (B_s^0 o D_s^- \mu^+ u_\mu)$	$33 imes 10^{-4}$	$7 imes 10^{-4}$	$3 imes 10^{-4}$	
Charm				-
$\Delta A_{CP} \ (D^0 \to K^+ K^-, \pi^+ \pi^-)$	$29 imes 10^{-5}$	$8 imes 10^{-5}$	$3.3 imes 10^{-5}$	0
$A_{\Gamma} \left(D^0 \to K^+ K^-, \pi^+ \pi^- \right)$	11×10^{-5}	$3.2 imes 10^{-5}$	1.2×10^{-5}	0
$\Delta x \ (D^0 \to K^0_{\rm s} \pi^+ \pi^-)$	$18 imes 10^{-5}$	$4.1 imes 10^{-5}$	$1.6 imes 10^{-5}$	
Rare Decays				1
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	-) 69%	27%	11%	1
$S_{\mu\mu} \left(B_s^0 ightarrow \mu^+ \mu^- ight)$	·	—	0.2	
$A_{\rm T}^{(2)} \ (B^0 \to K^{*0} e^+ e^-)$	0.10	0.043	0.016	
$A_{ m T}^{ m Im}~(B^0 o K^{*0} e^+ e^-)$	0.10	0.043	0.016	1
$\mathcal{A}^{\Delta\Gamma}_{\phi\gamma}(B^0_s o \phi\gamma)$	$^{+0.41}_{-0.44}$	0.083	0.033	
$S_{\phi\gamma}(B^0_s \to \phi\gamma)$	0.32	0.062	0.025	
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$	0.097	0.038	
Lepton Universality Tests				
$R_K \ (B^+ \to K^+ \ell^+ \ell^-)$	0.044	0.017	0.007	1
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.12	0.022	0.009	
$R(D^*) \ (B^0 o D^{*-} \ell^+ u_\ell)$	0.026	0.005	0.002	-

LHCb upgrade I

- Increased luminosity up to 2*10³³ cm⁻² s⁻¹ (5x)
- ~ 5 visible interactions/bunch crossing
- ~ 50 fb⁻¹ expected in Run 3&4

https://arxiv.org/abs/2305.10515, CERN-LHCC-2011-001

Major upgrade of the detector + purely software trigger with read out rate at 40 MHz

Partial reconstruction and selection to reduce data flow from 40 Tb/s to 1-2 Tb/s in HLT1(GPUs) Detector alignment and calibration in real time Full reconstruction with offline quality in real time in HLT2

The future of LHCb

Unprecedented potential for heavyflavour at the HL-LHC, but not only...

https://cerncourier.com/a/lhcb-looks-forward-to-the-2030s/ M. Palutan, LHCC May 30th 2023

Excellent technology case (granularity, timing, rad hard, ..)!

Extensive R&D campaign will be a bridge towards projects based at future accelerators

LHCb upgrade II

- $L_{peak} = 1.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- ~ 40 visible interactions/bunch crossing
- ~ 300 fb⁻¹ expected in Run 5&6

major change of the detector during LS4, to sustain the expected instantaneous luminosity

many R&D activities on-going for tracking, PID detectors and preparation of infrastructures

The current LHCb Muon System

M1 removed during LS2

MWPC gas mixture: Ar/CO2/CF4 (40/55/5)

four stations equipped with 4-gap multi-wire-proportional chambers alternated with iron absorbers.

As many physics channels are identified by a clear μ signature, its performance is crucial for the success of LHCb.

Excellent performance in Runs 1 and 2:

- Detection efficiency > 99% in all regions
- Muon ID efficiency ~ 97%
- No significant ageing

Run3 commissioning, J/Psi $\rightarrow \mu\mu$ @HLT2

The future Muon System

Challenge: maintain current sub-detector performance at U2

rate expected @U2 extrapolating from rates measured in Run 3

Limiting factors:

FEE deadtime for muon efficiency, high misID due to increased combinatorial rate & particle flux

Three "handles" to solve it, **under study**: improved granularity, new electronics and additional shielding in front of M2

Chamber rates on <u>M2R1-R2</u> (Hz/cm²)						
66493	120583			148811		77788
99470	217584			255560		107048
147585	321062	538980		508077	340550	170105
187623	<mark>594044</mark>				<mark>573691</mark>	205862
193571	<mark>496249</mark>				<mark>549110</mark>	217988
143561	341093	558687		<mark>546084</mark>	344551	152596
103585	2098	374		248	696	114114
65005	122387			135696		73421

The future Muon System

Baseline option (under study)

- Inner regions (R1-R2): μRWells
- Outer regions (R3-R4): MWPCs at their full granularity

Increased number of channels and new FEE across the whole detector

Possible replacement of HCAL with a shielding (under study)

• R1-R3: full iron, 10.1

- Median plane: iron/concrete/iron sandwich, $6.2\lambda_{\rm I}$
- \bullet Top and bottom: concrete, $4\lambda_{\rm I}$

Negligible muonID efficiency loss

Maximum rate per region (black) and mitigation effect of the shielding (red)

Maximum chamber rate (kHz/cm²)					
	M2	M3	M4	M5	
R1	594.0 -> 344.5	274.5	203.5	232.7	
R2	255.6 -> 79.2	64.2	34.1	39.0	
R3	53.4 -> 19.2	8.9	6.2	8.9	
R4	9.9	3.0	1.7	6.8	

MUUN UZ	aetector	granularity	
	# of	Pad size	
	chamber	s cm×cm	
M2R1	12	0.9×0.9	
M2R2	24	0.9×1.8	
M3R1	12	1.0×1.0	포
M3R2	24	1.0×1.9	R
M4R1	12	1.1×1.0	
M4R2	24	1.1×2.1	
M5R1	12	1.2×1.1	
M5R2	24	1.2×2.2	
M2R3	72	2.5×12.5	
M2R3n	40	2.5×6.3	
M2R4	128	5×25	
M3R3	64	2.7×13.5	M
M3R4	176	5.4×27.0	
M4R3	48	5.8×14.5	, vi
M4R4	192	5.8×29.0	
M5R3	48	6.2×15.5	
M5R4	192	6.2×31.0	
Total	1104		

µRWELLs for the high rate inner regions

Current MWPC in R1-R2 \rightarrow stack of 4 µRWELL gaps, size 30x25 to 74x31 cm²

NIMA 1049 (2023) 168075, 2019-JINST 14 P05014, 2015-JINST 10 P02008

PEP: Patterning–Etching–Plating

- Single DLC layer ~100 nm-thick
- Grounding from top by Cu and kapton etching and plating
- scalable to larger size (prototype under test 10x10cm²)

expected @U2, δ = 100ns

Maximum deadtime inefficiency % <u>HCAL - µRWELL</u>					
	M2	M3	M4	M5	
R1	1.18	0.48	0.79	0.95	
R2	1.22	0.32	0.31	0.41	

Upgrade for the outer regions

Baseline option under study:

- Current MWPCs, at their full granularity
- The granularity will be increased in some regions as well.
- A good fraction of the present chambers will be reused.

Possible new readout scheme for the outer regions. The 4 gaps in the MWPC can be read individually to greatly reduce background rates, here requiring a majority 2/4 and projective fired pads.

Other detector options for the outer regions

- improve the rate capability (up to several kHz/cm²) ⇒ reduce electrode resistivity and thickness, reduce average charge per event
- study and optimize detector performance with eco-friendly gas mixtures

- Compact, easy-to-build solution
- Main drawback: radiation-induced SiPM damage ⇒ adequate shielding against neutrons

Conclusion

The LHCb Upgrade II has been proposed to fully exploit the flavour physics opportunities of the High Luminosity era, probing a wide range of physics observables with unprecedented accuracy

As many physics channels are identified by a clear μ signature, the Muon System performance is crucial for the success of LHCb

A new design for the Muon Detector is under study, in order to deal with the luminosity and readout rate increase while preserving its stable operation together with highly efficient μ detection capability.

An intense R&D activity on new technologies is currently ongoing heading to HL-LHC.

Backup

LHCb upgrade II

 L_{peak} = 1.5 × 10³⁴ cm⁻²s⁻¹ with ~ **40 visible interactions** Expected to collect about 300 fb⁻¹ in Runs 5+6

Detector challenge!

Key ingredients:

- improve granularity
- exploit timing
- radiation hardness

