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Classification of heavy flavor (b and c) jets crucial for several physics processes
involving heavy quarks, such as Higgs decays
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https://cds.cern.ch/record/2642472?ln=fr
https://pdg.lbl.gov/2023/html/authors_2023.html

Heavy flavour jets

Jets originated from hadronization of b (c) quarks:

> Lifetime of b (c) hadrons ~ 1.5 ps (~1 ps)
— displaced tracks from PV (impact parameter) displaced

- SV iet/
> Larger mass and harder fragmentation w.r.t. |

light quarks and gluons
— larger py of the decay products

2018 JINST 13 P05011

charged
lepton

eavy-flavour
jet

> Presence of a muon or electron in 20% (10%) :
of the cases PV e
jet
Heavy flavour tagging performed by combining many
discriminating variables by means of MVA techniques

c-tagging more complex than b-tagging:
discriminating variable distributions intermediate between b and light-jet ones

A. Zaza ICNFP2023 3



https://iopscience.iop.org/article/10.1088/1748-0221/13/05/P05011

Heavy flavour tagging: Sl an
DeepCSV

| Charged (9 features) x6 H preprocessing b
> Deep Neural Network (DNN) B [ oreprocessing | Deep bb
. | T
4 hidden layers - 100 nodes 100 nodes x4 | ..
preprocessing i Ig
> 5 classes:
b (1 b), bb (2 b),
d b) (2 C) " 13 TeV, 2016 o 13 TeV, 2016
c(lcan I'.]O , CC ) ‘§' 1= CMS —bjets ;E; CMS —bjets
lg (everything else) o [ Simulation it ~ ' Simulation ~ ciets
. . 2 19 fyjets clets @ 10k fi+jets : _
> Jets reweighted to avoid pr and n ¢ F p,>20Gev —udsgjets | S F p >20Gev — udsg jets
dependencies across flavours during | & F
the training 0k
> Simulated samples used for training: 10°F
ti and QCD 43 s I | | | | | | | |
1240 10709 20 30 40 50 60 70 80 80 100
3D IP/o SV 2D flight distance significance
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https://iopscience.iop.org/article/10.1088/1748-0221/13/05/P05011

CMs,

Heavy flavour tagging:
Deeplet

DNN, Convolutional NN (CNN) and Recurrent

2020 JINST 15 P12012

NN (RNN) |Charged (16 features) x25|- 1x1 conv. 64/32/32/8|— RNN 150|— b
bb
> Low level features from a large number of [Neutral (6 features) x25|—| 1x1 conv. 32/16/4|— RNN 50— 2ooﬁ§'§s:s . |_tepb
jet constituents [Secondary Vix (12 features) x4l | 1x1 conv. 64/32/32/8]{ RNN_50]— 100 nodes x7 | |
> Jets reweighted to avoid p; and 1) depen- [Global variables (6 features) | 9
dencies across flavours during the training
> Automatic feature engineering performed for each constituent using 1x1 convolutional layers
> 3 RNN layers combine the information for each constituent sequence
> Fully connected layers combine the full jet and per-event level information
> 6 classes:
b, bb, lepb (leptonic b hadron decays)
c, cc, l(uds), g
> Simulated samples used for training: tt and QCD
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https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12012

B-tagging performance
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C-tagging performance

CMS @
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https://cds.cern.ch/record/2789753/files/document.pdf

Performance in data

CMS Preliminary 2018 (59.8fb~")
LI_-Q T T T T T T T T
. . . . o 1 o DeepCSV L WP (comb) + System8 + Tag&Probe |
> MC simulation does not provide a perfect representation of L S i + ool |+ Kinft
data — necessary to apply SFs to MC 120 mm fits (stat@syst) 4 LT
NTagged 1.1E
mc _ "f
gf — “yTotal 1.0 4
Dat ) Mc 9 i
ata __ bl d
EF = SFrXer 0.8k ]
Tagged ,,Total . : 0 | P I N N 1 ]
N; 99ee, Ng 7', SFy: number of tagged jets, number of 20 30 50 70 100 140 200 300 600 _ 1000
. . . jet pr (GeV
total jets and calibration scale factor for the flavour f o et
CMS Preliminary 2018 (59.8fb~")
> SFs calculated with different methods specific for QCD &5 | DeepletMWP (comb)  + System8 -+ Tag&Probe
multijet, tt , Drell-Yan and W+c events 14 — ft + prrel + jn.ft
B it + (stat @ syst) 4+ LT
> SFs evaluated at different WPs 12 |
> SFs also estimated as a function of the discriminator value o 4 el gl p==
with the IterativeFit method (crucial for analyses in which ﬁk—r?___
the full distribution of the b-tagging discriminating values is 0.8
used, e.g. as inputs to an MVA) 20 30 50 70 100 140 200 300 600 1000
jet pr (GeV)
CMS DP-2023/005 3
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https://cds.cern.ch/record/2854609
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Performance in data: N =

- § CMSPreliminary . _2018 (59.8b7")

c-tagging scores o e |
"l 4+ charm jet SF (M WP)
| + charm jet SF (T WP)

1.2
1.1F
> Three different sets of event selection, targeting ¥ — —
W-+c, tt and DY+jets/QCD events oo — -
respectively c-, b- and light-enriched 08—+
> SFs calculated as function of both CvsL and CvsB = T ey
X CMSPre/iminar;( | | _ 2018 (59.8f0°")
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https://cds.cern.ch/record/2789753/files/document.pdf
https://cds.cern.ch/record/2854610

Heavy flavour tagging in > @ - @
boosted topologles

»J won G > At high energy, particles

N\ decaying to b or c quarks can
be highly boosted and the
decay products can result in
overlapping jets

> In many analyses targeting X — qgq with p¥ > my,
large radius jets (i.e. AK8) are used

Double-b and DeepDoubleX taggers perform boosted jet (qq) tagging
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https://cds.cern.ch/record/2714889?ln=it

Heavy flavour tagging in 1 f<GR

boosted topologies

double b tagger
Dedicated BDT algorithm for identification
of the decay of a boosted object to a b quark
pair

« 27 jetrelated properties exploited

* Input variables related to the correlation
between the flight directions of the b quarks
built by using the N-subjettiness axes to
associate tracks and vetex to the subjets

The performance of the two taggers is
evaluated by using AK8 jets (AR = 0.8) in a
boosted region of 300 < p; < 1200 GeV
and mass window 20-200 GeV

CMS-DP-2022/041

DeepDoubIeX (DDX) tagger
DNN algorithm for identification of the decay of a
boosted object to a b or c quark pair

* Architecture and input variables set motivated by
Deeplet

« Three separate taggers trained to distinguish H- bb and
H- cc jets from QCD: DDBvL, DDCvL, DDCvB

__________ I
! Charged Particles | . ConvlD N GRU >
! 607 particles x 307 features 2 layers (32+32) 1 layers (50)
I_ e _l dropout = 0.1 dropout = 0.1
__________ I
" Neutral Particles | — ConvlD . GRU . Output
! 1001 particles x 107 features 2 layers (32+32) 1 loyers (50) D 2 nodes
I | dropout = 0.1 dropout = 0.1 ense (softmax)
__________ 1 layer (100) | e
__________ dropout =
|
: Secondary Vertices | ConvlD . GRU > 0.1 3 variations:
101 vertices x 147 features 2 layers (32+32) 1 layers (50) bb vs light
I_ o _I dropout = 0.1 dropout = 0.1 ccvs light
__________ ccvs bb
|
: double-b (jet-level) | ,
| 1jetx 271 features |
up to


http://cds.cern.ch/record/2839736/files/DP2022_041.pdf

Tagging performance in =8 an
boosted topologies

, CMS Simulation Preliminary (13 TeV) , CMS Simulation Preliminary (13 TeV)
> 10 T T T 7T T T T > 10 T IRAEEE RERRS | T : T
= 300 < pr < 1200 GeV A 3 300 < pr < 1200 GeV . )
g 20 < msp < 200 GeV 3 20 < mep < 200 GeV 4+ MCsimulation used for
i - double-b, AUC = 93.2% i s - — DDCVL, AUC = 93.6% 7 training and ROC
o D3 ke S . . oo
2 . - DDBL(VO), AUC=072% LA 2 o - DDOVAUC=952% ] estimation: QCD multijet,
a — DDBVL, AUC = 98.6% N ¢ 9 ~ H— bb and H— cC events
8 8
S sy .
'S  DeepDoubleX shows highly
102} | T o > improved performance w.r.t.
double-b tagger in H— bb vs
QCD discrimination
10-2 4 B Lo L N | . 1 | 10-3 ._’/ | | | ] ] I I !
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 1.0
H - bb tagging efficiency H — c¢ tagging efficiency

DDBVL (VO): earlier version of the DeepDoubleBvL
The latest version is mass-decorrelated by design (variable-mass Higgs MC samples are used) and
exploits feature-ranking to prune and trim some input variables
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Plans for Runi

ParticleNet
« Dynamic Graph CNN (DGCNN) considering jets as particle clouds
« Used for AK8 classification in some Run2 analyses (boosted Hbb/Hcc)

* Plans to use ParticleNet architecture for heavy flavour tagging during Run3

(13 TeV) (13 TeV)
5, 15""""'1 ............ EEREEEEEEEEEE 5 1EVV||,,|,,,.,,,.,,..E
I3 | Simulation Preliminary o | Simulation Preliminary
= _ H—>bb vs. QCD multijet = _ H—cc vs. QCD multijet
© 107E goep : E 0 107'E oo E
ho = <P; <1000 GeV, In" 1<2.4 | ke = 500<pT <1000 GeV,In" 1<2.4
= [ 90<mg, <140 Gev | S [ 90 <mg, <140 GeV
% | — DeepAKs %
D . ,-2| - DeepAKs-MD i 2 1n2L i
% 10 F ParticleNet E 8 10 E
m [ - -ParticleNet-MD m
- % DeepAK8-DDT (5%) — DeepAKS
" % DeepAK8-DDT (2%) -+ DeepAK8-MD
10—3 = _ 10—3 | ParticleNet ]
= --- ParticleNet-MD E
= % DeepAK8-DDT (5%) ]
i [ * DeepAK8-DDT (2%) ]|
10_4 I I R T T T T 10_4 L PRSI RS S TS S SR S DeepAKS8: previous DNN-based benchmark
0 0102 03 04 05 06 0.7 0.8 0 02 04 06 08 1
Signal efficienc Signal efficienc
CMS-DP-2020/002
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http://cds.cern.ch/record/2707946?ln=en

Plans for Runi

ParticleTransformerAK4 Adversarial training
* Transformer neural network for AK4 jet * New strategy for reduction of data/MC differences
tagging prior to calibration and classifier robustness
* Additional input: pairwise «interaction» improvement
features between all jet constituent particles « Fast Gradient Sign Method (FGSM) attack used to
and secondary vertices systematically distort inputs
] ys=13 TeV - x1osCMSIPreliminary ‘ 41517,2017 (13TeV) XmSCMS‘PreIiminar)‘/ 4151071, 2017 (13 TeV)
> El o w . S el et R S ° DY +jet Pre - Calibration channel 2 350 DY +jet Pre - Calibration y channel ]
= CMSsimuiation Preliminary e o oVl i |G e o o =i
3 it events aof - ] ' -
o jet p.>30.Ge 28
Q._ ¥ L 250 1
E 1071 ; —— ParticleTransformerAK4 Sof ] 2ol
E [ 150
- : 1.0 ] 1.0 -
10_27 = 05 -= 1 0.5 -
: ] " = B -
- —udsg | | g . SEREREREe -3 DS
""" c T e T 3B e T
10° b e e b e Soer Bog
0 01 02 03 04 05 06 07 08 0. 1 o'-%.-z 00 02 04 06 08 1.0 °%5 50 0z 07 06 08 To
efficiency DeepJet (Nominal Training) BvsL DeepdJet (Adversarial Training) BvsL
CMS-DP-2022/050 CMS-DP-2022/049
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http://cds.cern.ch/record/2839919
http://cds.cern.ch/record/2839920

CMS,

Summary

Heavy flavour tagging at CMS - Run2
> Comparison Deeplet/DeepCSV on AK4 jets
Deeplet shows much better performance

CMS physics programme largely

benefits from these powerful
both taggers show good MC/data agreement tagging algorithms

> Comparison double-b/DeepDoubleX on AKS8 jets
DeepDoubleX outperforms and enables c-tagging

New strategies for Run3
> ParticleTransformer and Adversarial training
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DeepAKS

DeepAKS8: multi-class particle identification algorithm for identifying hadronic decays of
highly Lorentz-boosted top quarks and W, Z, and Higgs bosons for AK8 jets

Two lists of inputs defined for each jet:

1. Particle list: up to 100 jet constituent particles, g Part'c.h.es
sorted by decreasing pT. Measured properties (42) of & y <= >
. . particles, ordered by pr Fully
each particle (py, energy deposit, charge, angular connected| | Output
separation between the particle and the jet axis, etc) = secondary Vertices N
For charged particles, additional information S Y m (e
measured by the tracking detector is also included. =Y Vs odered by Seaa.
2. SVlist: up to 7 SVs, each with 15 features, such as Figure 9: The network architecture of DeepAKS.
the SV kinematics, the displacement, and quality
criteria.

CMS-PAS-JME-18-002
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https://cds.cern.ch/record/2683870?ln=it

Soft-Drop (SD)
Algorithm that recursively removes wide-angle radiation from a jet.
It depends on two parameters, a soft threshold z_,, and an angular exponent (3.
1. Break the jetj into two subjets by undoing the last stage of C/A clustering. Label the
resulting two subjets as j; and JHEP 05 (2014) 146

. o 0 min 10T 1 ’B o o . B .
2. If the subjets pass the condition pT(If+p§2 ) S e (%) , ] is the final soft-drop jet

3. Otherwise, redifine j to be equal to subjet with the larger p+

N-subjettiness
Jet shape variable, computed under the assumption that the jet has N subjets, and it is defined
as the p; -weighted distance between each jet constituent and its nearest subjet axis (AR):

1 3
™ = @ EP’% min(ARyg, ..., ARNk), 2018 JINST 13 P05011
k

Where k runs over all jet constituents. The 1y variable has a small value if the jet is consistent

with having N or fewer subjets. The subjet axes are used as a starting point for the
minimization. After the minimization, the t, axes, also called T axes, are obtained.
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L .. 00000000000


https://link.springer.com/article/10.1007/JHEP05(2014)146
https://iopscience.iop.org/article/10.1088/1748-0221/13/05/P05011

> @ o
Fast Gradient Sign Method (FGSM) attack

It is used to systematically distort inputs based on the geometry of the loss surface and acts
on inputs x,,,, as follows:

XFGSM = Xraw T € - SgN (eraw J (Xraw, ¥ )) CMS-DP-2022/049

where y refers to truth labels, and J is the loss function.
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