

Heavy flavour tagging at the CMS experiment

Angela Zaza on behalf of the CMS collaboration

University of Bari & INFN

Motivation

Classification of heavy flavor (b and c) jets crucial for several physics processes involving heavy quarks, such as **Higgs** decays

Heavy flavour jets

Jets originated from hadronization of b (c) quarks:

- ▷ Lifetime of b (c) hadrons ~ 1.5 ps (~1 ps) \rightarrow displaced tracks from PV (impact parameter) \rightarrow SV
- Larger mass and harder fragmentation w.r.t. light quarks and gluons
 - \rightarrow larger p_T of the decay products
- Presence of a muon or electron in 20% (10%) of the cases

Heavy flavour tagging performed by combining many discriminating variables by means of MVA techniques

c-tagging more complex than b-tagging: discriminating variable distributions intermediate between b and light-jet ones

2018 JINST 13 P05011

Heavy flavour tagging: **DeepCSV**

Deep Neural Network (DNN)
 4 hidden layers – 100 nodes

▷ 5 classes:

b (1 b), bb (2 b), c (1 c and no b), cc (2 c), lg (everything else)

- ▷ Jets reweighted to avoid p_T and η dependencies across flavours during the training
- Simulated samples used for training:
 tt and **QCD**

2018 JINST 13 P05011

Heavy flavour tagging: DeepJet

2020 JINST 15 P12012

- DNN, Convolutional NN (CNN) and Recurrent NN (RNN)
- Low level features from a large number of jet constituents
- \triangleright Jets reweighted to avoid \mathbf{p}_{T} and $\boldsymbol{\eta}$ dependencies across flavours during the training
- > Automatic feature engineering performed for each constituent using 1x1 convolutional layers
- ▷ 3 RNN layers combine the information for each constituent sequence
- ▷ Fully connected layers combine the full jet and per-event level information
- ▷ 6 classes:

b, bb, **lepb** (leptonic b hadron decays) c, cc, **l** (uds), **g**

 \triangleright Simulated samples used for training: $t\bar{t}$ and QCD

ICNFP2023

5

B-tagging performance

$$P(BvsAll) = \frac{P(b) + P(bb) + P(lepb)}{P(b) + P(bb) + P(lepb) + P(c) + P(uds) + P(g)}$$

Working Points Loose (L): 10% udsg mis-id rate Medium (M): 1% udsg mis-id rate Tight (T): 0.1% udsg mis-id rate

C-tagging performance

2022 JINST 17 P03014

Performance in data

▷ MC simulation does not provide a perfect representation of data \rightarrow necessary to apply SFs to MC

$$\varepsilon_{f}^{MC} = \frac{N_{f}^{Tagged}}{N_{f}^{Total}}$$
$$\varepsilon_{f}^{Data} = SF_{f} \times \varepsilon_{f}^{MC}$$

 N_f^{Tagged} , N_f^{Total} , SF_f : number of tagged jets, number of total jets and calibration scale factor for the flavour f

- ▷ SFs calculated with different methods specific for QCD multijet, $t\bar{t}$, Drell-Yan and W+c events
- ▷ SFs evaluated at different WPs
- SFs also estimated as a function of the discriminator value with the IterativeFit method (crucial for analyses in which the full distribution of the b-tagging discriminating values is used, e.g. as inputs to an MVA)

Performance in data: c-tagging scores

- Three different sets of event selection, targeting W+c, tt and DY+jets/QCD events respectively c-, b- and light-enriched
- ▷ SFs calculated as function of both CvsL and CvsB

WP	DeepCSV					DeepJet				
					udsg eff.					udsg eff.
Loose	0.064	0.313	91.4%	35.0%	90.0%	0.038	0.246	94.4%	35.0%	90.0%
Medium	0.153	0.363	57.7%	25.0%	25.0%	0.099	0.325	63.7%	25.0%	25.0%
Tight	0.405	0.288	34.2%	20.0%	3.00%	0.282	0.267	40.3%	20.0%	3.00%

CMS DP-2023/006 JINST 17 (2022) P03014

Heavy flavour tagging in **boosted topologies**

▷ In many analyses targeting $X \rightarrow q\bar{q}$ with $p_T^X \gg m_X$, large radius jets (i.e. AK8) are used

Double-b and **DeepDoubleX** taggers perform boosted jet $(q\bar{q})$ tagging

 At high energy, particles decaying to b or c quarks can be highly boosted and the decay products can result in overlapping jets

Heavy flavour tagging in **boosted topologies**

double-b tagger

- Dedicated BDT algorithm for identification of the decay of a boosted object to a b quark pair
- 27 jet related properties exploited
- Input variables related to the correlation between the flight directions of the b quarks built by using the N-subjettiness axes to associate tracks and vetex to the subjets

The performance of the two taggers is evaluated by using AK8 jets ($\Delta R = 0.8$) in a boosted region of $300 < p_T < 1200$ GeV and mass window 20-200 GeV

CMS IEtute Vacande di Faica Kucker

DeepDoubleX (DDX) tagger

- DNN algorithm for identification of the decay of a boosted object to a b or c quark pair
- Architecture and input variables set motivated by DeepJet
- Three separate taggers trained to distinguish $H \rightarrow b\bar{b}$ and $H \rightarrow c\bar{c}$ jets from QCD: **DDBvL**, **DDCvL**, **DDCvB**

CMS-DP-2022/041

Tagging performance in **boosted topologies**

- MC simulation used for training and ROC estimation: QCD multijet, $H \rightarrow b\bar{b}$ and $H \rightarrow c\bar{c}$ events
- DeepDoubleX shows highly improved performance w.r.t. double-b tagger in $H \rightarrow b\overline{b}$ vs QCD discrimination

DDBvL (V0): earlier version of the DeepDoubleBvL

The latest version is mass-decorrelated by design (variable-mass Higgs MC samples are used) and exploits feature-ranking to prune and trim some input variables

CMS-DP-2020/002

Plans for Run3

ParticleNet

- Dynamic Graph CNN (DGCNN) considering jets as particle clouds
- Used for AK8 classification in some Run2 analyses (boosted Hbb/Hcc) ۰
- Plans to use ParticleNet architecture for heavy flavour tagging during Run3 •

Plans for Run3

ParticleTransformerAK4

- Transformer neural network for AK4 jet tagging
- Additional input: pairwise «interaction» features between all jet constituent particles and secondary vertices

Adversarial training

ICNFP2023

- New strategy for reduction of data/MC differences prior to calibration and classifier robustness improvement
- Fast Gradient Sign Method (FGSM) attack used to systematically distort inputs

CMS-DP-2022/049

Summary

Heavy flavour tagging at CMS – Run2

- Comparison DeepJet/DeepCSV on AK4 jets
 DeepJet shows much better performance
 both taggers show good MC/data agreement
- Comparison double-b/DeepDoubleX on AK8 jets DeepDoubleX outperforms and enables c-tagging

New strategies for Run3

▷ ParticleTransformer and Adversarial training

CMS physics programme largely benefits from these powerful tagging algorithms Thank you for listening!

angela.zaza@cern.ch

Back-up

angela.zaza@cern.ch

18

DeepAK8

DeepAK8: multi-class particle identification algorithm for identifying hadronic decays of highly Lorentz-boosted top quarks and W, Z, and Higgs bosons for AK8 jets

Two lists of inputs defined for each jet:

- Particle list: up to 100 jet constituent particles, sorted by decreasing pT. Measured properties (42) of each particle (p_T, energy deposit, charge, angular separation between the particle and the jet axis, etc) For charged particles, additional information measured by the tracking detector is also included.
- 2. SV list: up to 7 SVs, each with 15 features, such as the SV kinematics, the displacement, and quality criteria.

Figure 9: The network architecture of DeepAK8.

CMS-PAS-JME-18-002

Soft-Drop (SD)

Algorithm that recursively removes wide-angle radiation from a jet.

It depends on two parameters, a soft threshold z_{cut} and an angular exponent β .

- 1. Break the jet j into two subjets by undoing the last stage of C/A clustering. Label the resulting two subjets as j_1 and j_2
- 2. If the subjets pass the condition $\frac{\min(p_{T1}, p_{T2})}{p_{T1}+p_{T2}} > z_{cut} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$, j is the final soft-drop jet
- 3. Otherwise, redifine j to be equal to subjet with the larger p_T

N-subjettiness

Jet shape variable, computed under the assumption that the jet has N subjets, and it is defined as the p_T -weighted distance between each jet constituent and its nearest subjet axis (ΔR):

$$T_{\rm N} = rac{1}{d_0} \sum_k p_{\rm T}^k \min(\Delta R_{1,k}, \dots, \Delta R_{{\rm N},k}),$$
 2018 JINST 13 P05011

Where k runs over all jet constituents. The τ_N variable has a small value if the jet is consistent with having N or fewer subjets. The subjet axes are used as a starting point for the τ_N minimization. After the minimization, the τ_N axes, also called τ axes, are obtained.

JHEP 05 (2014) 146

Fast Gradient Sign Method (FGSM) attack

It is used to systematically distort inputs based on the geometry of the loss surface and acts on inputs x_{raw} as follows:

$$x_{\text{FGSM}} = x_{\text{raw}} + \epsilon \cdot \text{sgn}\left(\nabla_{x_{\text{raw}}} J(x_{\text{raw}}, y)\right)$$

CMS-DP-2022/049

where *y* refers to truth labels, and *J* is the loss function.