

Recent results of SUSY searches at CMS

Danyer Pérez Adán

 $On \ behalf \ of \ the \ CMS \ collaboration$

XII International Conference on New Frontiers in Physics Kolymbari, Crete (Greece), 11.07.2023

Theoretical Scenario: simplified stealth SUSY model

- > Extension of MSSM with a hidden sector: ${\bf S}$ and ${\bf \tilde{S}}$
- > Weakly coupled to SUSY-breaking sector (\approx SUSY) \Rightarrow small mass difference: $\Delta m(S, \tilde{S})$
- > Gravitino is LSP and is produced via $\tilde{S} \to S\tilde{G}$: low momentum LSP

Experimental Signature: $2\gamma + \text{jets} + \text{small } p_T^{\text{miss}}$

- \blacklozenge Targets primary interaction through strongly-produced SUSY particles (\tilde{g} or $\tilde{q}) \blacklozenge$
- multiple jets produced in decays of \tilde{g} or \tilde{q} : $p_T > 30$ GeV & $|\eta| < 2.4$
- two photons arising from decays $\tilde{\chi}_1^0 \rightarrow \tilde{S}\gamma$: $p_T > 30/25$ GeV & $|\eta| < 1.442$ (triggering)
- low $\mathbf{p}_{\mathbf{T}}^{\text{miss}}$ carried by the soft and light \tilde{G}

• large
$$\mathbf{S_T} \equiv \sum_{\text{photons}} |\vec{p}_T| + \sum_{\text{jets}} |\vec{p}_T| + |\vec{p}_T^{\text{miss}}|$$
: $S_T > 1200 \text{ GeV}$

Signal Extraction

- \star fit **S**_T distribution (6 bins)
- ★ categorization according to n_{jets}
 (3 bins): 4, 5, and > 6 jets
- * background estimation using data-driven method: $\mathbf{S_T}$ shape predicted from low \mathbf{n}_{jets} region
- No deviation from SM expectation \mapsto

Theoretical Scenario: simplified GMSB models

- LSP is gravitino \Rightarrow NLSP nature primarily determines signature

 - If NLSP is $\tilde{\chi}_1^0$, decays of the form $\tilde{\chi}_1^0 \to (Z/H/\gamma)\tilde{G}$ occur
 Similarly for $\tilde{\chi}_1^{\pm}$ co-NLSP (mass degeneracy with $\tilde{\chi}_1^0$), $\tilde{\chi}_1^{\pm} \to W^{\pm}\tilde{G}$ decay is relevant

Experimental Signature: photons + jets + p_T^{miss}

 \blacklozenge Optimized for strong production with dedicated search regions for electroweak modes \blacklozenge

$p_{\mathrm{T}}^{\mathrm{miss}}$	$>$ 300 GeV for SRs and \in [200, 300] GeV for CRs	Fat-jet tagging
$N_{\rm jets} \ (p_{\rm T} > 30 { m GeV}, \ \eta < 2.4)$	≥ 2	
$\gamma (p_{\rm T} > 100 { m GeV}, \eta < 2.4)$	≥ 1	
$S_{\mathrm{T}} = \sum_{\mathrm{jets}} p_{\mathrm{T}} + p_{\mathrm{T}}^{\gamma}$	> 300 GeV	
$\Delta \phi(\text{jet}\vec{p}_{\text{T}},\vec{p}_{\text{T}}^{\text{miss}})$	> 0.3 for 2 highest $p_{\rm T}$ jets	w/2 -> qq
Number of leptons (e, μ)	0	
Number of isolated tracks	0	
		H -> bb

- ▷ 'lost lepton': $W\gamma$ + jets & $t\bar{t}\gamma$ + jets with lepton not identified
 - estimated using 1l control-regions (CRs) via the transfer factor method
- 'misidentified $\mathbf{e} \to \gamma$ ': W + jets & $t\bar{t}$ + jets with electron misidentified as photon
 - $e \rightarrow \gamma$ fake rates measured in simulation and corrected from data using tag & probe
- ▷ $\mathbf{Z}(\rightarrow \nu \bar{\nu})\gamma + \mathbf{jets}$: irreducible background
 - estimated from simulation with additional corrections from 2l CR in data
- $\triangleright \gamma + jets$ and QCD multi-jets: p_T^{miss} and jets mismeasurements
 - estimated using ABCD method with p_T^{miss} and $\Delta \phi(\text{jet}\vec{p}_T, \vec{p}_T^{\text{miss}})$ variables

Interpretation in the context of various scenarios

SUSY@CMS

Theoretical Scenarios

- Production/decay of EWKinos, in which $\mathbf{NLSP} \to \mathbf{LSP}~\mathbf{X}~(\mathbf{X}{=}\mathrm{W,Z,H})$
- Pair production of sleptons (\tilde{l}) , in which $\tilde{l} \to l \tilde{\chi}_1^0$

Higgsino-bino model: bino-like LSP and mass-degenerate light higgsinos

danyer.perez.adan@cern.ch

$\label{eq:search} \fbox{Search} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	WX
WZ \checkmark \checkmark \checkmark	
WH V V V	

danyer.perez.adan@cern.ch

SUSY@CMS

GMSB & Higgsino-bino & Sleptons

Model / S	learch	2/31 soft	21 (on-Z)	21 (off-Z)	\geq 31	11 2b	4b	Hadr. WX
GMSB	ZZ		\checkmark		\checkmark			
	HZ		\checkmark		\checkmark			
	HH				\checkmark		\checkmark	
Higgsino- bino	WW							\checkmark
	HH						\checkmark	
	WH				\checkmark	\checkmark		\checkmark
Sleptons	l^+l^-	\checkmark		\checkmark				

300 200

35% CL Upper limit

 $m_{\chi^0_{\tau}} = m_{g^0}$ [GeV]

200 F 100

m_î [GeV]

ŧ

35% CL Upper

Experimental Signature: disappearing tracks (DTks)

 \blacklozenge Suitable for many production and decay modes \blacklozenge

- At least one DTk
 - * two track classifications
 - short track: hits only in Pixel and $p_T>25~{\rm GeV}$
 - long track: hits in both Pixel & Strips and $p_T>40~{\rm GeV}$
 - * BDT classifiers trained for both *short* and *long* tracks to improve purity of DTks
 - * Small energy deposits in the calorimeters

SUSY@CMS

- \triangleright Four search channels: hadronic + DTk, e + DTk, μ + DTk, and \geq 2 DTks
- $\triangleright \ \underline{49} \ \mathrm{SRs} \ \mathrm{defined} \ \mathrm{according:} \ \mathbf{n_{jet}}, \ \mathbf{n_{b-jet}}, \ \mathbf{n_{short}}, \ \mathbf{n_{long}}, \ \mathbf{hard} \ \mathbf{p_T^{miss}}, \ \mathrm{and} \ \mathbf{dE/dx}$
- ▷ Background mostly originated by *instrumental* effects
 - misreconstruction of charged particles
 - coincidental alignment of hits from different tracks
 - estimated using data-driven method targeting *fake* and *prompt* track backgrounds

Large variety of interesting and challenging SUSY signatures being covered by CMS

- Targeting multiple final states and optimized for various production modes
- Exploiting advanced multivariate techniques and sophisticated reconstruction algorithms
- Presented the *four* most recent SUSY results at CMS
 - $\circ\,$ Search for stealth SUSY sets most stringent limits on gluinos (squarks) masses for this kind of model
 - Dedicated search in $\gamma + \text{jets} + p_T^{\text{miss}}$ final state can set solid constraints on both electroweak and strong production of SUSY particles
 - $\circ~Six$ searches combined in legacy EWK ino combination for Run 2 \rightarrow can set limits on a variety of simplified models
 - $\circ~$ Novel search for disappearing~tracks can probe many possibilities with long-lived particles
- \circledast No sign of SUSY observed yet, but exploration continues

Large variety of interesting and challenging SUSY signatures being covered by CMS

- Targeting multiple final states and optimized for various production modes
- Exploiting advanced multivariate techniques and sophisticated reconstruction algorithms
- Presented the *four* most recent SUSY results at CMS
 - Search for stealth SUSY sets *most stringent limits* on gluinos (squarks) masses for this kind of model
 - Dedicated search in γ + jets + p_T^{miss} final state can set solid constraints on both electroweak and strong production of SUSY particles
 - $\circ~Six$ searches combined in legacy EWK ino combination for Run 2 \rightarrow can set limits on a variety of simplified models
 - $\circ\,$ Novel search for $disappearing\ tracks$ can probe many possibilities with long-lived particles
- No sign of SUSY observed yet, but exploration continues

Thanks for your attention!