

Searches for Dark Matter with CMS

ICNFP2023: 12th International Conference on New Frontiers in Physics

Work supported by DOE Award: DE-SC0010103

Pedro J. Fernández Manteca

Rice University

10th - 23rd July, 2023

Probing Dark Matter

- Evidence of Dark Matter (DM) on several astronomical observations
- DM is expected to compose about 25% of our universe
- Underlying assumption: DM interacts with the Standard Model particles (SM) at least by the weak interaction

- **Direct detection**: scattering of DM particles on nuclei
- Indirect detection: annihilation products out of DM
- **Collider search**: produce DM through collision of SM particles

Hunting Dark Matter at the LHC

- The LHC is currently the best machine to produce high energy physics both for its energy and for its luminosity → Possibility of study particles up to high masses with low production cross sections
- Classical searches: Weakly Interacting Massive Particle (WIMP). It is not expected to interact
 in the detectors → Missing Energy
- Simplified DM models: Explicit definition of the mediator and couplings
 - Free parameters: masses, spins, coupling structure and strength

DM particles are produced together with Standard Model particles
Look for an energetic SM particle recoiling against the invisible DM system (p_T^{miss} + X signature)

- DM mediators are produced and decay to pair of SM particles, typically quarks
- Search for bumps in the $\ensuremath{\mathsf{m}_{jj}}$ spectrum

- DM production through the Higgs portal

- Higgs Boson can decay into DM particles

The CMS experiment

CMS data & Triggers

· CMS collected 138 fb-1 of good data at 13 TeV (Run 2)

- Already collected about 60 fb-1 at 13.6 TeV (Run 3)
 - Larger datasets, but with larger pileup. p_T^{miss} and triggers very sensitive to this
- How do we collect the interesting events? Triggers

Most searches have exploited the Run 2 (2016 + 2017 + 2018) dataset for now

The Key variable: p_T^{miss} (MET)

- The sum of all final-state particles transverse momentum is expected to be null
- Since DM particles are not expected to interact with the detector → p_T^{miss} ≠ 0
- Most analyses rely on large p_T^{miss} balancing against "visible" (X) objects (jets, boosted-jets, b-jets, photons, charged leptons...)

$$\Delta \phi (p_T^{miss}, X) \sim \pi$$
$$p_T^{miss} \sim p_T^X$$

- Events with non-null p_T^{miss} can arise from limited detector resolution, presence of neutrinos in final state, non-collisional background events...
 - Understanding p_T^{miss} is a critical task

2500

3000

p_____ [GeV]

 10^{-2}

500

1000

1500

2000

Main Dark Matter analysis in CMS

The goal is to search for DM in all possible / feasible final states

Bunch of classical searches during Run 2 presented in several conferences since 2017. No significant
discrepancies with SM predictions observed → results interpreted as limits on DM mediators, simplified
model parameters, and on DM-nuclei interaction cross sections

pt ^{miss} + X	Mediator searches	Higgs Portal	Dark Photon
 mono-X: Mono-jet & Mono-V (cms-exo-20-004) Mono-photon (cms-exo-16-053) Mono-Z(→ℓℓ) (cms-exo-19-003) Mono-top (cms-exo-16-051) Mono-Higgs (cms-exo-18-011) DM + t / tt (cms-exo-18-010) 	 Di-jet X → jj bump hunting (CMS-EXO-16-056) Di-jet light resonances (CMS-EXO-17-001) Angular Di-jet (CMS-EXO-16-046) 	• Higgs → invisible (смѕ-ніс-20-003)	 Dark Photons in VBF Higgs (cms-exo-20-005) in Z(ll) + HY + MET (cms-exo-19-017) Resonance decaying to two muons (cms-exo-19-018)

- Covered in this talk: latest CMS results on Run 2 data (became public within the last year or so) involving more exotic signatures and / or novel interpretations:
 - Search for inelastic Dark Matter with long-lived particles (CMS-EXO-20-010)
 - Search for semi-visible jets (CMS-EXO-19-020)
 - Search for dark Higgs (CMS-EXO-21-012)

Search for inelastic Dark Matter

arXiv:2305.11649

• Two dark matter states χ_1 and χ_2 with near masses

 Vector current couples χ₁ and χ₂ as the Majorana mass term δ/m << 1 (<u>Smith & Weiner, PRD 64 (2001)</u> 043502)

$$\overline{\psi}\gamma_{\mu}\psi \simeq i(\overline{\chi}_{1}\overline{\sigma}_{\mu}\chi_{2} - \overline{\chi}_{2}\overline{\sigma}_{\mu}\chi_{1}) + \frac{\delta}{2m}(\overline{\chi}_{2}\overline{\sigma}_{\mu}\chi_{2} - \overline{\chi}_{1}\overline{\sigma}_{\mu}\chi_{1})$$

Model parameters:

m1 = [3-80] GeV m2 - m1 = δ = {0.1, 0.4} * m1 lifetime χ 2= [1-1000] mm mA' = 3 * m1 coupling strength of dark QCD α_D = {0.1, α_{EM} } fixed kinematic mixing ε between Y, Z and A'

• Dominant ineslastic coupling $\rightarrow \chi_1$ and χ_2 can be produced simultaneously at the LHC via dark photon

 Compatible with observed relic DM abundance from cosmological measurements Proj studies: Izaguirre, Krnjaic & Shuve, PRD 93 (2015) 063523

Events topology

- Soft decay muons due to small mass difference δ between χ_1 and χ_2
- Decay width of χ_2 proportional to $\delta^5 \rightarrow$ **long-lived muons**
- Displaced muon reconstruction:
 - Used hits from muon detectors only
 - No beam constraints
 - Worse momentum & position resolution but much better reco efficiency for large displacements

Analysis strategy

• Event selection:

- Two displaced muons, MET > 200 GeV, 1 or 2 reconstructed jets, $\Delta \phi$ (MET, leading jet) > 1.5, $\Delta \phi$ (MET, sub-leading jet) > 1.5, no b-tagged jets, $\Delta R(\mu+, \mu-) < 0.9$, $\Delta \phi$ (MET, $\mu+\mu-$) < 0.5
- Analysis categorization based on geometrical matching with standard muons (0-match, 1-match, 2-math)
 - Maximize the resolution & signal sensitivity on 0-match
- Background estimation: ABCD data-driven approach
 - For 1-match & 2-match: v1 = muon displacement, v2 = muon isolation
 - For 0-match: v1 = muon displacement, v2 = $\Delta \phi$ (MET, $\mu + \mu$ -)

Bin	0-match			1-match		2-match			
	$\Delta \phi_{\mu\mu}^{ m miss}$ [rad]	$\min -d_{xy}$ [cm]	Events	$I_{\rm PF}^{ m rel}$	$\min -d_{xy}$ [cm]	Events	$I_{\rm PF}^{ m rel}$	$\min -d_{xy}$ [cm]	Events
Obs. A	0-0.25	3–15	68	>0.25	0.02-0.75	716	>0.25	0.02-0.15	424
Obs. B	0.25-0.50	3–15	9	< 0.25	0.02-0.75	33	< 0.25	0.02-0.15	22
Obs. C	0-0.25	>15	9	>0.25	>0.75	12	>0.25	>0.15	10
Obs. D		\ 1⊑	2	<0.25	> 0.75	0	<0.25	> 0.15	0
Pred. D	0.25-0.50	>15	1.2 ± 0.6	< 0.25	>0.75	0.5 ± 0.2	< 0.25	>0.15	0.5 ± 0.2

$$N_{bkg}^A / N_{bkg}^B = N_{bkg}^C / N_{bkg}^D$$

Results

- $\cdot\,$ First attempt to search for inelastic DM at the LHC
- Upper limits on $\sigma(pp \rightarrow A' \rightarrow \chi_2 \chi_1) B(\chi_2 \rightarrow \chi_1 \mu^+ \mu^-)$
 - Tighter constraint around 30 GeV as mA' = $3^*m\chi_1 \sim m_Z$ (larger xsec from mixing with Z boson)
 - $\alpha_{\rm D} \propto 1/\epsilon^2 \rightarrow \text{smaller xsec for } \alpha_{\rm D} = 0.1$

Search for Semi-visible jets

- Z' boson mediator with couplings to the SM quarks (g_q) and dark quarks (g_γ)
- Several flavors of quarks (χ₁, χ₂...) contained by dark sector which can yield to stable or unestable dark hadrons:
 - Unstable hadrons → decay to SM particles
 - Stable hadrons (DM candidates) → no interaction with the detector
- Collimated mixture of visible and invisible particles so called "semi-visible jets". Wider and more energetic than SM jets
- Jets aligned with MET (commonly rejected by other DM searches). Overall MET will cancel as Z' is produced at rest
 - Back-to-back semi-visible jets

- r_{Inv} ~ 1 → covered by classical searches (high MET along with ISR radiation)
- r_{Inv} ~ 0 → covered by di-jet searches (two jets and low MET)

Analysis strategy

• Event selection:

- Two central wide jets with pT > 200 GeV (signal topology), dijet mT > 1.5 TeV, $\Delta \eta$ (j1, j2) < 1.5 (trigger)
- Lepton veto (reject t⁻t, W+jets)
- $R_T > 0.15$ (reject QCD), $\Delta \varphi_{min} < 0.8$ (reject t⁻t, W+jets, Z(vv)+jets)

- Two signal regions to maximize the signal sensitivity:
 - Low- R_T : 0.15 < R_T < 0.25
 - High- R_T : $R_T > 0.25$

- Two analysis approaches:
 - Inclusive / Generic analysis (sensitive to any model)
 - BDT based (semi-visible jets tagger. Dark sector model dependent)

BDT training & performance

- Jet tagger trained to discriminate semi-visible jets from lighter SM jets (different underlaying interactions between SM and dark quarks → make use of jet internal structure features)
 - Trained on a mixture of different signal samples and simulated multijet and t⁻t events
 - 15 input variables related to jet flavor, substructure, q/g discrimination... etc
 - Reweighted background jet p_T spectrum to match signal \rightarrow flat efficiency vs mT

- Selected jets with BDT score > 0.55 → rejects ~84-88% background jets, keeps ~87% of signal semi-visible jets
- Same signal region categorization as in the inclusive analysis: Low-R_T (0.15 < R_T < 0.25); High-R_T: (R_T > 0.25) for events with 2 jets with BDT score > 0.55.

Results

• Signal extraction: fit to mT shape

$$m_T^2 = m_{JJ}^2 + 2 MET \left[\sqrt{m_{JJ}^2 + p_{T,JJ}^2} - p_{T,JJ} \cos(\varphi_{JJ,MET}) \right]$$

• Background estimated with analytic smoothly falling function

$$g(x) = \exp(p_1 x) x^{p_2[1+p_3\ln(x)]}$$
 $x = m_T / \sqrt{s}$

• Background normalization can freely float to the data

Results

- Excluded models with 1.5 < $M_{Z'}$ < 4.0 TeV and 0.07 < r_{inv} < 0.53 (inclusive), and 1.5 < $M_{Z'}$ < 5.1 TeV and 0.01 < r_{inv} < 0.77 (BDT-based) for m_{dark} = 20 GeV
- BDT efficiency depends on m_{dark} → the inclusive search provides stronger limits at very high and very low m_{dark} values. Inclusive also provides reinterpretability for other signal models with MET aligned with jets

Search for Dark Higgs

- Search for DM using the dark Higgs simplified model as benchmark
- Emission of a dark Higgs boson, *S*, that mixes with the SM boson and would provide mass to the DM (WIMPs) particles
 - *S* can decay into SM states → can be searched at the LHC.
 - Mass scan [m*S*, mZ', m χ]. Fixed couplings
- Since *S* can be lighter than DM particles, it **could relax the DM relic abundance** constraints by introducing a new annihilation channel $\chi\chi \rightarrow SS$
- WW decay mode dominates the dominates the picture for m*S* ≥ 160 GeV (resonance). Ongoing CMS bb analysis is exploring the low mass region m*S* < 160 GeV
- Semi- and di-leptonic W⁺W⁻ final states have been studied

m_s [GeV]

Event selection: dileptonic

• The analysis targets the dileptonic + semileptonic decay of the W⁺W⁻ boson pair

Event selection: semileptonic

• The analysis targets the dileptonic + semileptonic decay of the W⁺W⁻ boson pair

Background estimation overview

• Dileptonic:

- **Non-prompt** leptons: estimated with a fully data-driven method, and validated in same-signed validation region
- **Top-quark:** the normalization is measured using toptagged events in data control region
- Non-resonant WW: the normalization is measured using events with large angular distance between the two leptons in data control region
- Z/γ * → τ⁺τ⁻: the normalization is measured using low mT(ℓℓ+MET) events in data control region

• Semileptonic:

- Non-prompt: same strategy as for dileptonic
- Top-quark: same strategy as for dileptonic
- W+Jets: the normalization is measured using events with mjj side band in data control region
- All other (small) processes are estimated directly from simulation: HWW, VY/VY*, VZ, VVV

	Orthogonal selection:
	Same lepton charges
	Number of b-tagged jets > 0
	∆R(ℓℓ) > 2.5
	m⊤(ℓℓ+MET) < 50 GeV
	mT(I + MET) < 30 GeV && MET < 30 GeV
	Number of b-tagged jets > 0
	m <i>iji</i> <65 or m <i>iji</i> > 105 GeV
ľ	(keeping the other oreselection requirements

in each case)

Analysis strategy: dileptonic

- **Dileptonic signal extraction:** 3D ML fit to $\Delta R(\mathcal{U}) m\mathcal{U} mT(\mathcal{U}min + p_T^{mis})$
- More sensitive to the dark Higgs signal prediction than other quantities based on lepton kinematics and/or $p_{\rm T}$
- Optimized procedure: strong kinematic dependence on m_s
 - Three signal regions are defined in ∆R(𝔅), based on the S/sqrt(S+B) curves vs ∆R(𝔅) for each dark Higgs mass
 - SR1: ΔR(𝔄) < 1.0, SR2: 1.0 < ΔR(𝔄) < 1.5, SR3: 1.5 < ΔR(𝔄) < 2.5

- For each SR, a 2D template of mll mT(lmin + p_T^{mis}) is defined:
 - The mll binning is set from significance S/sqrt(S+B) curves vs mll for each dark Higgs mass
 - The mT(*l*min + pTmiss) binning is set by squeezing the sensitivity for each data period
- Allow the different signal mass points to freely populate the 3D phase space while using the same background modeling procedure

Results: dileptonic

- The signal strength is extracted by fitting the predicted yields to the observed events
- ML fit: 3 Signal Regions, 1 Top Control Region, 1 DY Control Region, 1 WW Control Region for each data period
 - Signal regions information entering in the fit: 2D histograms of m ℓ mT(ℓ min + p_T^{mis}) from SR1, SR2 and SR3
 - Control regions information entering in the fit: 1-bin distributions. Top, WW, and DY normalization freely float within the global fit

• No significant excess over the SM prediction

Analysis strategy: semileptonic

- Semileptonic signal extraction: fit to the shape of BDT output score
- BDT trained with set of variables that showed most separation power between signal and background, based on final state objects (lepton, 2 jets, MET)

Variable	Definition
$p_{\mathrm{T}}^{\mathrm{jj}}$	$p_{\rm T}$ of the vectorial sum of the W candidate jets
$p_{\mathrm{T}}^{\ell j j}$	$p_{\rm T}$ of the vectorial sum of the visible particles
$p_{\mathrm{T}}^{\mathrm{miss}}$	Size of the missing transverse momentum vector
$\Delta \eta_{\ell,ij}$ and $\Delta \phi_{\ell,ij}$	$\Delta \eta$ and $\Delta \phi$ between the lepton and the di-jet system
$\Delta \eta_{i,j}$ and $\Delta \phi_{i,j}$	$\Delta \eta$ and $\Delta \phi$ between the W candidate jets
$\Delta \eta_{\ell, p_{\mathrm{T}}^{\mathrm{miss}}}$ and $\Delta \phi_{\ell, p_{\mathrm{T}}^{\mathrm{miss}}}$	$\Delta \eta$ and $\Delta \phi$ between the lepton and $\vec{p}_{\rm T}^{\rm miss}$
$\Delta \phi_{\ell \mathrm{j}\mathrm{j},p_\mathrm{T}^\mathrm{miss}}$	$\Delta\phi$ between the vectorial sum of the visible particles and $ec{p}_{ ext{T}}^{ ext{miss}}$
$min(p_{\mathrm{T}}^{\ell},p_{\mathrm{T}}^{\mathrm{j}_{2}})/p_{\mathrm{T}}^{\mathrm{miss}}$	Minimum of the lepton $p_{\rm T}$ and the trailing jet $p_{\rm T}$, divided by $p_{\rm T}^{\rm miss}$
$max(p_{\rm T}^\ell, p_{\rm T}^{\rm J_2})/p_{\rm T}^{\rm miss}$	Maximum of the lepton $p_{\rm T}$ and the leading jet $p_{\rm T}$, divided by $p_{\rm T}^{\rm miss}$
$max(p_{\rm T}^{\ell}, p_{\rm T}^{\rm J_1})/m_{\ell \rm jj p_{\rm T}^{\rm miss}}$	Maximum of the lepton $p_{\rm T}$ and the leading jet $p_{\rm T}$, divided by
<i>""</i> 1	the invariant mass of the vectorial sum of the visible particles and the $p_{ m T}^{ m miss}$
	where the missing energy is considered to be massless

• Binning optimized based on S/sqrt(S+B) curves for the three data periods

Results: semileptonic

- ML fit: 1 Signal Regions, 1 Top Control Regions, 1 DY Control Region, 1 WW Control Region for each data period
 - Signal regions information entering in the fit: 1D histograms of BDT output score
 - Control regions information entering in the fit: 1-bin distributions. Top and W+Jets normalization freely float within the global fit

• Finer binning in 2017-2018 to squeeze the sensitivity

Results: combination

• Dominant $S \rightarrow \chi \chi$ decay mode (invisible) for m $S \ge 2m\chi$

Z'

W

 W^+

 Observed limit is better than the expected due to slight data deficit in some of the sensitive bins

Conclusions

- Most recent searches for Dark Matter performed with the CMS detector have been presented
- Shown results on Run 2 data:
 - Search for inelastic Dark Matter with long-lived particles
 - Search for semi-visible jets
 - Search for dark Higgs
- No significant discrepancies with SM predictions observed → results are interpreted as limits on DM mediators, simplified model parameters, and on DM-nuclei interaction cross sections
- Large part of the CMS results exploit the full Run 2 dataset (138 fb⁻¹) so far
 - Already collected ~60 fb⁻¹ on Run 3 at 13.6 TeV
 - New results to come and new exotic signatures to be inspected in Run 3. Stay tuned!