ALICE Highlights

Fiorella Fionda^(*), on behalf of the ALICE Collaboration

(*)University & INFN, Cagliari

XII International Conference on New Frontiers in Physics July 10th-23rd, 2023 – Kolymbari, Creete, Greece

(Ultra-)Relativistic heavy-ion collisions

(Ultra-)Relativistic heavy-ion collisions

Quark-gluon plasma (QGP): deconfined state of strongly-interacting QCD matter

- Main goal of the ALICE Physics program: study the properties and the evolution of a heavyion collision, with a particular attention to the QGP state
- Rich program of measurements in small systems, namely pp and p-Pb collisions
 - **reference** measurements for interpreting heavy-ion results (e.g. vacuum production, Cold Nuclear Matter effects)
 - characterization of high-multiplicity events and search for collectivity in small systems

The ALICE detector in Run 1 & Run 2

- Designed to study the QGP and heavy-ion collisions
- Excellent tracking, vertexing and PID up to very high multiplicities and low transverse momentum

The physics of ALICE

Probing gluon PDF in nuclei with ultraperipheral Pb-Pb collisions

Xe. Pb Xe. Pb Photon-induced reactions \rightarrow Ultrarelativistic moving nuclei produce strong electromagnetic (EM) fields that v^0 , J/ψ , $\psi'(v, p_T^2)$ can be treated as a guasi-real photons flux $W^2_{\gamma p, Xe, Pk}$ ✓ In UPC: $b > R_A + R_B$ Z_{B} p, Xe, Pb p. Xe. Pb Two types of processes can contribute: ALICE, Pb–Pb $\sqrt{s_{NN}}$ = 5.02 TeV 1/N dN/dp_ (GeV/c) UPC, $L_{int} = 533 \pm 13 \text{ ub}^{-1}$ 2.85 < muu < 3.35 GeV/c² 2.5 < |y| < 4Incoherent: interaction of the **Coherent**: the photon interacts 0n0n — Coherent J/w photon with only one nucleon with the colour field of the whole Incoherent J/w Incoherent J/w with nucleon dissociation inside the nucleus nucleus Coherent J/w from w' decay 10 Incoherent J/w from w' decay — Continuum $\gamma\gamma \rightarrow uu$ — Fit: χ²/dof=1.35 10 arXiv:2305.19060 Elastic: interaction **Dissociative:** interaction with the full nucleon with sub-nucleon sized structures inside the 10nucleon 0.5 1.5 2.5 p_ (GeV/c)

Probing gluon PDF in nuclei with ultraperipheral Pb-Pb collisions

✓ **<u>Coherent</u>** photonuclear cross section γ +Pb → J/ ψ +Pb:

Cross section rises with γ -N centre-of-mass energy $(W_{\gamma Pb,n})$

arXiv:2305.19060

- constrain gluon PDFs in nuclei down to $x_{\text{Bjorken}} \sim 10^{-5}$
- Impulse approximation and Starlight (no shadowing / saturation effects) systematically overpredict the cross section at intermediate / high energies
- Within uncertainties models that include either shadowing or saturation can fairly describe the data, except for the energy range 25-35 GeV

Probing gluon PDF in nuclei with ultraperipheral Pb-Pb collisions

Incoherent photonuclear cross section vs Mandelstam |t| variable

✓ First measurement of incoherent photonuclear production of J/ψ

arXiv:2305.06169

- None of the models is able to catch normalization and |t| dependence simultaneously
- Agreement with data improves after the inclusion of scattering structures at sub-nucleon scale (i.e. dissociative-like component)

J/ψ polarization w.r.t. event plane

– Polarization: angular
distributions of decay products
w.r.t. a polarization axis

- Event Plane based frame (EP):

axis orthogonal to the event plane in the collision center of mass frame

 Event Plane normal to B and L

- Heavy quarks produced early in the collisions can experience both *B* and *L* originated in the initial stage !

- $W(\theta) \propto \frac{1}{3+\lambda_{\theta}} \left(1+\lambda_{\theta} \cos^2{\theta}\right)$
- ✓ Significant polarization (3.5 σ) in 40-60% and 2 < p_{T} < 6 GeV/c
- Small centrality dependence

Theoretical description of vector meson polarization in heavy ion collisions still missing

arXiv:2204.10171

The physics of ALICE

Quarkonia: dissociation vs regeneration

In-medium dissociation (color Debye screening)

Matui & Satz, Phys.Lett. B178 (1986) 416-422

Nuclear modification factor R_{AA}

$$R_{AA} = \frac{1}{N_{coll}} \times \frac{(dN/dy)_{AA}}{(dN/dy)_{pp}}$$

VS

Regeneration of quarkonia

Braun-Munzinger and Stachel, PLB 490 (2000) 196 Thews et al., PRC 63 (2001) 054905

Nature 448 (2007) 302-309

Quarkonia: dissociation vs regeneration

- Models including regeneration mechanism in fair agreement with data
 - Statistical Hadronization (SHM):all charmonia produced at the QGP phase boundary with thermal weights
 - Transport model (TAMU): solve Boltzmann equation with gain (regeneration) and loss (melting) terms
- large uncertainties on the models arise from charm cross sections and poor constrained nuclear PDF

Quarkonia: dissociation vs regeneration

BR α^{J/4} 0 Excited states: different binding energies are expected to change the relative contributions of suppression / regeneration ₩ ₩ 1.4 Pb–Pb, $\sqrt{s_{NN}}$ = 5.02 TeV CMS, |y_{cms}| < 1.6, 0–100%-ALICE, $2.5 < y_{cms} < 4, 0-90\%$ (EPJC78(2018)509) J/w (JHEP 2002 (2020) 041) 0.0 1.2 J/ψ w(2S ψ(2S) TAMU 0.005 _J/ψ 0.8 ___ψ(2S) 0.6 0.4 $\sigma_{\psi(2S)}/\sigma_{J/\psi}]_{pbpb}/[\sigma]$ 0.8 0.2 0.6 0.4 0.2 5 10 15 20 25 30 *p*_{_} (GeV/*c*) ALI-PUB-528412

 ψ(2S) more suppressed compared to J/ψ; rise of J/ψ and ψ(2S) R_{AA} towards low p_T

arXiv:2210.08893

- ✓ p_T dependent R_{AA} in agreement with TAMU for both charmonium states
- ψ-to-J/ψ ratio: powerful tool for disentangle among different regeneration scenarios
 - good agreement with TAMU; tensions visible with SHMc at higher centralities

LI-PUB-528400

Anisotropic flow of identified hadrons

$$\frac{dN}{d\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cdot \cos[n(\varphi - \Psi_{\rm RP})] \quad v_n = \langle \cos[n(\varphi - \Psi_{\rm RP})] \rangle$$

Decomposed transverse projection of participant region in Fourier series

Initial spatial anisotropy:

- Almond shape of the participant region \rightarrow generates ellipticity (ε_2)
- Energy density fluctuations in the overlap region \rightarrow generates triangularity (ε_3)
- Higher harmonics → mainly arising from the combination of the lower order components
- \rightarrow low-*p*_T: sensitive to bulk QGP properties

 \rightarrow high- $p_{\rm T}$: sensitive to the in medium energy loss (path-length dependence)

Anisotropic flow of identified hadrons

- ✓ Mass ordering at low p_T and meson-baryon splitting at intermediate p_T
- Overall good description provided by CoLBT model (including hydro+coalescence+fragmentation)

• Coalescence contribution needed for describing data at intermediate $p_{\rm T}$ (but not the only mechanism at play)

JHEP 05 (2023) 243

R_{AA} and flow of prompt D mesons

JHEP 01 (2022) 174

R_{AA} and flow of prompt D mesons

JHEP 01 (2022) 174

- ✓ First measurement of D⁰ meson R_{AA} in Pb-Pb collisions down to $p_T = 0$
- ✓ The simultaneous description of R_{AA} and v₂ in central and semicentral collissions is a challenge for theoretical models
- Few models that are in fair agreement with both observables used to constrain the heavy-quark spatial diffusion coefficient:

 $1.5 < 2\pi D_{\rm s} T_{\rm c} < 4.5$

 \rightarrow narrower interval w.r.t. previous estimations based on D-meson measurements at LHC energies

JHEP 12 (2022) 126

b-quark energy loss in QGP

- ✓ Accessed via non-prompt D⁰ measurements
- Larger suppression observed for prompt compared to non-prompt D⁰ above 5 GeV/c
- ✓ Well described within uncertainties by TAMU, CUJET3.1, LGR and MC@sHQ +EPOS2 → all, but TAMU, include both radiative and collisional energy loss mechanisms
- ✓ Coalescence can explain the minimum observed at low $p_{\rm T}$ in the non-prompt to prompt D⁰ $R_{\rm AA}$ ratio
- ✓ Radiative energy loss contribution needed at intermediate / high $p_{\rm T}$

b-quark thermalisation in QGP

- ✓ Positive non-prompt D⁰ v_2 observed in 2 < p_T < 12 GeV/*c* in semicentral collisions
 - Compatible with elliptic flow of $b \rightarrow e$
- Described by models including hadronization via coalescence and fragmentation

The physics of ALICE

Light-flavour hadron abundances at the freeze-out

- Production of light-flavour hadrons well described by Statistical Hadronization Model (SHM) fit over 9 orders of magnitude (Grand Canonical ensemble forumulation)
- Hadron yields can be described as emerging from a hot Hadron-Resonance Gas in thermal equilibrium
 - At LHC: $\mu_{\rm B} \sim 0$, $T_{\rm ch} \sim 156$ MeV
- Precise determination of the parameters thanks to the wide variety of particle yields available with good experimental precision

Antimatter / matter imbalance at the LHC

✓ Reduced uncertainties on $\mu_{\rm B}$ w.r.t. global SHM fit thanks to the cancellation of correlated uncertainties in the ratio

with $T = 156.2 \pm 2 \text{ MeV}$

The physics of ALICE

From large to small systems...

Particle production across systems

 Smooth trend of multiplicity dependent particle production ratios from pp to Pb-Pb multiplicities

arXiv:2211.04384

 Is charged particle multiplicity the relevant parameter to explain strangeness enhancement or other "QGP-like" effects in small systems ?

24

Particle production across systems

ALIC

Smooth trend of multiplicity dependent particle production ratios from pp to Pb-Pb multiplicities

 Is charged particle multiplicity the relevant parameter to explain strangeness enhancement or other "QGP-like" effects in small systems ?

25

arXiv:2211.04384

[→] See more in Maria Barlou's talk

Collectivity in small systems ?

ALI-PREL-503277

Similar mass ordering and meson-baryon splitting in p-Pb collisions as observed in Pb-Pb collisions

Collectivity in small systems ?

ALI-PREL-503272

- Similar mass ordering and meson-baryon splitting in p-Pb collisions as observed in Pb-Pb collisions
- \checkmark Comparison with models indicate that coalescence is needed to describe the flow at intermediate p_{T}
- ✓ Collective behaviour observed in p-Pb collisions also for J/ ψ , but only at high p_{T}

Collectivity in small systems ?

→ Common mechanism at the origin of the flow in large and small systems ?

ALI-PREL-503272

- Similar mass ordering and meson-baryon splitting in p-Pb collisions as observed in Pb-Pb collisions
- \checkmark Comparison with models indicate that coalescence is needed to describe the flow at intermediate p_{T}
- ✓ Collective behaviour observed in p-Pb collisions also for J/ ψ , but only at high p_{T}

The "baryon anomaly" in the HF sector

- ✓ First measurement of Λ_c production down to $p_T = 0$ in small systems !
- ✓ Enhancement of Λ_c/D^0 ratio at low and intermediate momentum w.r.t. e⁺e⁻ results (LEP average: 0.113 ± 0.013 ± 0.006 [EPJC 75 (2015) 19])
 - Significantly underestimated by **PYTHIA8** Monash tune (which incorporates fragmentation parameters from e⁺e⁻ data)
- Data qualitatively reproduced by models implementing baryon to meson ratio enhancement via various mechanisms (color reconnection, feed-down from unobserved resonant charm baryon states, quark coalescence)

Phys. Rev. C 107 (2023) 064901

The "baryon anomaly" in the HF sector

- ✓ First measurement of Λ_{c} production down to $p_{T} = 0$ in small systems !
- ✓ Enhancement of Λ_c/D^0 ratio at low and intermediate momentum w.r.t. e⁺e⁻ results (LEP average: 0.113 ± 0.013 ± 0.006 [EPJC 75 (2015) 19])
 - Significantly underestimated by PYTHIA8 Monash tune (which incorporates fragmentation parameters from e⁺e⁻ data)
- Data qualitatively reproduced by models implementing baryon to meson ratio enhancement via various mechanisms (color reconnection, feed-down from unobserved resonant charm baryon states, quark coalescence)

→ See more in Syaefudin Jaelani's talk

Phys. Rev. C 107 (2023) 064901

The physics of ALICE

From large to small systems... ... and beyond

Contributing to dark matter research

5.0 4.5 ALICE Pb-Pb √s_{NN} = 5.02 TeV 0-10% centrality 4.0 |n| < 0.83.5 σ_{inel}(³He) (b) $\langle A \rangle = 34.7$ Data —– Geant4 3.0 2.5 2.0 1.5 TPC 1.0 0.5 TRD 10 0 2 3 5 6 Q 1 m p (GeV c⁻¹)

✓ ALICE detector used as anti-particle absorber \rightarrow novel technique

Nature Phys. 19 (2023), 61

✓ First experimental measurement of σ_{inel} (anti-³He) !

(*)galaxy transparency: the ratio of the flux obtained with and without the inelastic processes in GALPROP (https://galprop.stanford.edu).

- DM annihilation possible production source of anti-³He
- ✓ Disappearance probability of anti-³He (quantified by the anti-³He absorption cross section σ_{inel}) is crucial for studying the galaxy transparency^(*)

Contributing to dark matter research

Nature Phys. 19 (2023), 61

✓ Disappearance probability of anti-³He (quantified by the anti-³He absorption cross section σ_{inel}) is crucial for studying the galaxy transparency^(*)

High transparency of 50% for typical DM scenario and 25-90% for background processes

ALICE: a journey through QCD

- Bulk properties and thermodynamics of the QGP
- ✓ QGP dynamics and evolution
- Interactions of partons with QGP medium
- ✓ Hadronization mechanisms in the QGP medium
- Electromagnetic properties and phenomena
- Initial state
- ✓ QGP-like effects in small systems
- Many other aspects of QCD and beyond...

ALICE The ALICE experiment: A journey through QCD released in Nov 2022

arXiv:2211.04384

The ALICE detector in Run 3

ALICE upgrades during LS2 (arXiv:2302.01238)

F. Fionda, ICNFP 2023

35

Operations and performance with the upgraded detector

- Continuous readout
 - 500 kHz in pp (software trigger for selecting rare events)
 - goal: 50 kHz in Pb-Pb (x 50 compared to Run 2)
- Target luminosities in Run 3/Run 4
 - 200 pb⁻¹ in pp
 - 10 nb⁻¹ in Pb-Pb

Summary & Outlook

- ✓ Impressive collection of physics results produced by ALICE from Run 1 and Run 2
- ✓ Detailed insight into initial and final states of heavy-ion collisions at the LHC
- Intriguing results in small collisions systems
- ✓ Efficiently Run 3 data taking ongoing with upgraded ALICE detector
 - \rightarrow many Run 3 data results coming soon: stay tuned !

Summary & Outlook

- ✓ Impressive collection of physics results produced by ALICE from Run 1 and Run 2
- ✓ Detailed insight into initial and final states of heavy-ion collisions at the LHC
- Intriguing results in small collisions systems
- ✓ Efficiently Run 3 data taking ongoing with upgraded ALICE detector
 - \rightarrow many Run 3 data results coming soon: stay tuned !

Thank you for your attention:

Jet modifications in Pb-Pb

- ML technique for background subtraction allows for inclusive charged-particle jets measurements up to *R* = 0.6 in Pb–Pb collisions down 40 GeV/*c* and in central collisions
- ✓ Jet suppression increases with increasing *R*, most significantly for jets with R = 0.6 (not observed up to R = 0.4) → wider jets lose more energy
- Results consistent with a variety of theoretical descriptions within uncertainties

suppression factor:

$$R_{AA} = \frac{AA}{\langle T_{AA} \rangle pp}$$

ALICE Data

JEWEL w/o Recoils

60

80

Factorization

40

MARTINI

I IDO

I RT

20

ALICE, 0–10% Pb–Pb Vs_{NN} = 5.02 TeV

Mehtar-Tani et. al, g Mehtar-Tani et. al, g

Mehtar Tani et. al, all

100

Hybrid Model w/ Wake

JÉTSCAPE v3.5 AA22

120

 $p_{_{\mathrm{T,\,ch\,jet}}}$ (GeV/c)

140

Ch-particle jets, anti- $k_{\rm Tr} |\eta_{\rm int}| < 0.9$ -R

= 0.2)

 $= 0.6)/R_{AA}(R = 1$

R_{AA}(R =

0.6

0.4

0.2

