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Why Machine Learning in HEP?
• Large amount of data that need to be analyzed quickly.

• ML has high accuracy and sensitivity in searches for new particles and phenomena by distinguishing 

signal from background processes.

• Anomaly detection to detect rare or unexpected events that deviate from known physics processes.

• ML is versatile and can unify different strategies.

• It is in continuous development and promising techniques are appearing every day.
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INTRODUCTION

➢ In CMS there is a wide variety of ML techniques used at different levels.
➢ The CMS Machine Learning Group is growing and manages all the ML techniques that 

are being developed and applied in the different subgroups.
➢ In this talk, I had to do a selection of relevant studies but… there is a lot more ongoing! 
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OBJECTS
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PARTICLENET FOR JET TAGGING CMS-DP-2020-002

First graph-based tagger at LHC!
➢ Consider jets as unordered set of particles in space and use 

permutation-invariant graph neural networks. 
➢ Jet ParticleFlow constituents and secondary vertices as input 

nodes, with set of features. 
➢ Connect neighboring nodes to learn relations among 

constituents. 
➢ Sample training jets uniformly in pT/mass to avoid 

correlations with network output (MD).

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.056019

EdgeConv block ParticleNet

CMS-DP-2022-005

https://cds.cern.ch/record/2707946/
https://cds.cern.ch/record/2805611
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PARTICLENET FOR JET TAGGING

➢ ParticleNet has been used in many analyses

• HIG-21-008: VH, H→cc search achieved 
contraints on yc comparable to what had 
recently been expected at end of HL-LHC!

• B2G-22-003: Exclusion of nonzero quartic 
VVHH coupling, k2V, with significance >5σ.

➢ Performanced check in different scenarios:

CMS-DP-2020-002 CMS-DP-2022-005

http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG-21-008/index.html
http://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-22-003/index.html
https://cds.cern.ch/record/2707946/
https://cds.cern.ch/record/2805611
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TRANSFORMER FOR HEAVY FLAVOR JET IDENTIFICATION CMS-DP-2022-050

First attention-based tagger at LHC!
➢ As a step further for ParticleNet, there is a new Deep Learning algorithm that 

incorporates physics-inspired interactions in an augmented attention 
mechanism: ParticleTransformerAK4.

➢ Model: transformer model architecture. It contains a tailored attention 
mechanism involving the introduction of new pairwise features between all 
the jet constituents and secondary vertices. 

➢ ParticleTransformerAK4 can better learn and understand the internal 
structure of a jet improving the performance compared to the current state-
of-the-art model, DeepJet. 

• HIG-20-005: Setting the most stringent constraints on HH production 
in the four b-quark final state.

➢ Application of more powerful ML architectures in heavy flavor identification allowed recently setting the most stringent 
constraints on HH production!

https://cds.cern.ch/record/2839920/
http://dx.doi.org/10.1103/PhysRevLett.129.081802
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MUON MVA IDENTIFICATION CMS-PAS-MUO-22-001

Recently developed and available for Run 3 analyses! 
➢ Aimed at discriminating spurious muons and instrumental backgrounds.
➢ Should replace standard medium and tight cut-based IDs.
➢ Training: muons from ttbar sample dividing by its origin in ‘signal’ and ‘background’.
➢ Model: random forest.
➢ Inputs: same input variables as standard cut-based IDs. 
➢ Output: probability of a muon to be a signal muon.

http://cds.cern.ch/record/2859395
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MUON MVA IDENTIFICATION CMS-PAS-MUO-22-001

- Medium MVA WP: same background contamination as the medium 
cut-based WP with 0.5-1% higher efficiency.

- Tight MVA WP: achieves a 10% smaller background contamination 
than the medium MVA ID and the efficiency is about 99% . 

- MVA ID is more stable as a function of PU than the cut-based ID .

➢ Good performance achieved with the MVA, promising for Run 3!!

http://cds.cern.ch/record/2859395
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PROMPT MVA (TTH) CMS-PAS-MUO-22-001

➢ We have another MVA to select prompt muons and electrons at analysis level including isolation variables as input. 
➢ This MVA aims to improve the selection of prompt muons/electrons, arising from the decay of a W, Z, H boson or τ lepton, 

and to reduce the contamination of muons from other sources.
➢ Lepton MVA broadly used in CMS analyses: searches for supersymmetry, standard model precision measurements, 

studies of the top quark properties and measurements in the Higgs boson sector.

• Much better discrimination power for heavy decays 
than for light decays. 

➢ This model is the key to reject fakes in many analyses. But there is an effort in CMS to do an adaptation/modification 
of ParticleNet algorithm used for jet tagging for leptons, which is even more promising!!

http://cds.cern.ch/record/2859395
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ANALYSES
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FOUR-TOPS ALL-HADRONIC CMS-TOP-21-005 — Submitted to PLB

First all-hadronic tttt search with the main strategy
based on ML techniques!

➢ After multijet preselection a BDT is trained to
separate signal vs. QCD background → final
discriminating observable.

➢ Signal region (SR) splited by HT and resolved+boosted 
top multiplicity.

➢ DD yields estimated from data yields in 5 control
regions (CRs) using extended ABCD method.

➢ Background estimation with Neural Autoregressive
Flows (NAF), novel in CMS!!

• NAF transforms input BDT histograms (MC) to
match target (data) trained on same 5 CRs.

http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-005/
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CMS-TOP-21-005 — Submitted to PLB

➢ After training in the 5 CRs, the transformation between MC and data is applied to simulation in the SR → morphed to 
predict the shape of the tt+QCDmultijet background in the SR.

➢ Uncertainties derived from discrepancies in the validation region and applied to corresponding SR.

FOUR-TOPS ALL-HADRONIC

http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-21-005/
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EFT ANALYSIS IN ASSOCIATED Z PRODUCTION CMS-TOP-21-001

➢ Search for BSM physics in the scope of Effective Field Theory (EFT) considering interference effects during ML training! 
➢ Targeting tt + Z, tZW, tZq processes considering 5 EFT operators.

https://link.springer.com/article/10.1007/JHEP12(2021)083
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EFT ANALYSIS IN ASSOCIATED Z PRODUCTION CMS-TOP-21-001

➢ Further trainings with events classified as tZq and tt+Z → Binary 
classification of SM vs. EFT with following setups: 
• 1D: Consider only one operator at a time.
• 5D: Consider effects from all operators simultaneously.

➢ Increase in sensitivity by usage of ML between 20-70 % → ML crucial for this analysis.

https://link.springer.com/article/10.1007/JHEP12(2021)083
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LONG-LIVED USING A TRACKLESS AND DELAYED JET TAGGER CMS-EXO-21-014

➢ Search for long-lived particles (LLPs) decaying into displaced jets using a trackless and 
delayed jet tagger.

➢ Tracking efficiency decreases with displacement and jets appear as trackless, mostly 
consisting of neutral components.

➢ Slow-moving LLPs and/or path length increase due to displacement (delay).
➢ Strategy: increase sensitivity (lower masses) combining ECAL delay with track information 

in a new DNN jet tagger.

➢ Achieved very strong background suppression by using a DNN tagger.
➢ Compared to previous searches for promptly decaying χ, sensitivity 20–10 

times better at mχ = 400–600 GeV.

http://arxiv.org/abs/2212.06695
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MOTIVATION
➢ In CMS, data quality monitoring (DQM) and data certification (DC) are crucial components in ensuring reliable data 

quality suitable for physics analysis. 
➢ The current method for certification of quantities is mostly reliant on manually monitoring reference histograms 

summarizing the status and performance of the detector. 
➢ Given the large number of distributions that are mentioned, the process is time intensive and prone to human error 

when deviations from the norm are less evident. 

➢ Solution: Machine Learning methods for certifying offline/online DQM data!!

➢ Example of JetMET certification, but other efforts on  going:
• Resistive Plate Chambers subsystem of muon detectors [ACAT ‘22].
• Electromagnetic and Hadronic Calorimeters subsystems [CMS-DP-2022-043].
• Pixel Silicon Tracker subsystem [CMS-DP-2022-013].

JetMET certification [CMS-DP-2023-032]
• Variable reduction.
• Data certification with supervised 

classification.
• Anomaly detection with autoencoders.

https://indico.cern.ch/event/1106990/contributions/4991222/
https://cds.cern.ch/record/2839738?ln=en
https://cds.cern.ch/record/2812026?ln=en
https://cds.cern.ch/record/2860924?ln=en
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TRIGGER
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TRIGGER DEVELOPMENTS
➢ Challenges for HL-LHC

• Computational efficiency.
• Extreme data rates of (100 TB/s).
• Development of tool to port ML models to FPGAs: CMS first in deploying AI at 40 MHz in Run 3!

➢ Machine Leaning in Trigger:
• Graph Neural Networks for tracking.
• 1D convolutional neural networks for jets.
• Continual learning for top-up trainings.
• (Variational) autoencoders for anomaly detection.
• Fast ML (quantization, pruning).

CMS-DP-2022-021 CMS-DP-2023-022

https://cds.cern.ch/record/281472
https://cds.cern.ch/record/2859651?ln=en
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REFINING FAST SIMULATION USING ML
➢ In CMS, two simulation chains are used that produce output of same dimensionality/structure: FullSim and FastSim.
➢ In total: FastSim ≈ 10x faster than FullSim.
➢ Higher LHC luminosity (= more events) & detector upgrades (= more complex data)-> FastSim techniques needed.

Aim: increase FastSim accuracy 
to promote its wider usage.

Talk in CHEP2023

Possible FastSim tuning approaches:

• Internal tuning of functions/parameters (within
SIM/RECO).

• Post-hoc tuning (after NanoAOD):
• Reweighting: defining weights for individual

events/objects.
• Refining: changing high-level observables.

file:///C:/Users/andre/Desktop/20230511chep_MoritzWolf_Refinement_v2.pdf
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REFINING FAST SIMULATION USING ML
➢ In CMS, two simulation chains are used that produce output of same dimensionality/structure: FullSim and FastSim.
➢ In total: FastSim ≈ 10x faster than FullSim.
➢ Higher LHC luminosity (= more events) & detector upgrades (= more complex data)-> FastSim techniques needed.

Aim: increase FastSim accuracy 
to promote its wider usage.

Talk in CHEP2023

Possible FastSim tuning approaches:

• Internal tuning of functions/parameters (within
SIM/RECO).

• Post-hoc tuning (after NanoAOD):
• Reweighting: defining weights for individual

events/objects.
• Refining: changing high-level observables.

Considerably improved agreement with FullSim output!!

file:///C:/Users/andre/Desktop/20230511chep_MoritzWolf_Refinement_v2.pdf
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SUMMARY

➢Machine Learning has significant role in HEP.

➢Wide array of strategies and applications, very active field of research!!

➢ML techniques have helped in many analyses to have more sensitivity and will be very 
useful for the HL-LHC.

➢ I had to make a selection, but there are many more promising and innovative efforts in 
CMS on going, stay tuned!!



Back up
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PARTICLENET FOR JET TAGGING CMS-DP-2020-002 CMS-DP-2022-005

https://cds.cern.ch/record/2707946/
https://cds.cern.ch/record/2805611
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TRANSFORMER FOR HEAVY FLAVOR JET IDENTIFICATION CMS-DP-2022-050

https://cds.cern.ch/record/2839920/
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TRANSFORMER FOR HEAVY FLAVOR JET IDENTIFICATION CMS-DP-2022-050

https://cds.cern.ch/record/2839920/
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➢ ParticleTransformerAK4 significantly improves the performance compared to the current state-of-the-art model, DeepJet. 

• HIG-20-005: Setting the most stringent constraints on HH production 
in the four b-quark final state.

➢ Application of more powerful ML architectures in heavy flavor identification 
allowed recently setting the most stringent constraints on HH production!

TRANSFORMER FOR HEAVY FLAVOR JET IDENTIFICATION CMS-DP-2022-050

http://dx.doi.org/10.1103/PhysRevLett.129.081802
https://cds.cern.ch/record/2839920/
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JETMET: VARIABLE REDUCTION CMS-DP-2023-032

Fist step: select relevant observables.

➢ In order to determine which observable provides the 
most power in identifying anomalies, supervised 
models are trained on a set of already certified Runs. 

➢ Model: A fully connected neural network classifier is 
trained on the mean values of 124 observable 
distributions of each run, with labels of good/ bad 
are provided for each Run.

➢ Loss function used is binary cross entropy. 

➢ To optimize the set of input features, the first order 
gradient of the loss is calculated with respect to the 
input features. 

➢ Jet energy fractions are the most important features 
to use for DC. 

https://cds.cern.ch/record/2860924?ln=en
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JETMET: SUPERVISED CLASSIFICATION CMS-DP-2023-032

Second step: check the selected observables.
➢ In order to judge the power of those 25 jet fraction observables in detecting potentially anomalous Runs, we test with 

three different classifiers: 
• K- Nearest Neighbors (KNN).
• Gaussian Naive Bayes (Gaussian-NB).
• Support Vector Machine (SVM).

➢ The three classifiers have shown excellent performance achieving ROC AUC scores above 0.90 for both training and 
test sets. 

➢ Among all the classifiers, KNN has emerged as the best performing one.

https://cds.cern.ch/record/2860924?ln=en
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JETMET: ANOMALY DETECTION WITH AE 
Third step: detect anomalies with unsupervised autoencoders. 
➢ Model: fully connected autoencoder model is trained with good Runs only and 

tested with different good and bad Runs. 
➢ Inputs: the mean values of 25 jet energy fractions. 
➢ Loss function: the mean square error (MSE) for this model.
➢ The proposed approach is as follows: 

1. Find the highest MSE value in the training dataset of good Runs and use it 
as a threshold. 

2. Apply the threshold to the maximum MSE values of the test dataset, 
creating a cutoff. 

3. Classify the Runs as bad if their max MSE value exceeds the threshold 
determined; otherwise, classify them as good.

CMS-DP-2023-032

https://cds.cern.ch/record/2860924?ln=en
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NN FOR THE IDENTIFICATION OF B QUARKS IN THE PHASE-2 LEVEL-1 TRIGGER CMS-DP-2022-021

➢ NN to discriminate between jets originating from bottom quarks and jets originating from light quarks or gluons using.
➢ It is feasible to be implemented on current trigger hardware where jets are built. 
➢ It is also capable of operating within the budgeted latency requirements of the Level-1 trigger environment. 

• Training: Monte Carlo samples with 200 pileup interactions, simulating the conditions of the HL-LHC.
• Model: Neural network with two 1D convolutional layers.
• Inputs: top ten PUPPI candidates within each jet. Variables: particle type, kinematic and vertex information.
• Output: probability of a jet to have been originated from bottom quarks.

➢ Performance tested in trigger efficiency in HH→bbbb events
• b-tag NN trigger increases the efficiency for events with low mHH.

https://cds.cern.ch/record/281472
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CONTINUAL LEARNING IN THE CMS PHASE-2 LEVEL-1 TRIGGER CMS-DP-2023-022

➢ Continual learning (CL) is very useful in online environment and changing conditions to avoid retraining. 
➢ In the Phase-2 Upgrade of the CMS Level-1 trigger many ML algorithms are to be used but have to be small and 

lightweight so may not be able to deal with large domain shift at inference time.
➢  This study explores a possible solution to this issue in the form of top-up trainings of a model on small datasets with 

degradation. 
➢ Performance tested in a simple fake vertex ID task that uses a simple convolutional NN. We have 3 scenarios:

• No retraining: standard training in large sample.
• Non-CL Top-Up: standard training + top-up trainings in 3 new degraded datasets with a lower learning rate .
• CL Top-Up: standard training + top-up trainings in 3 new degraded datasets but using a CL algorithm.

• This study demonstrates how ML can 
lose robustness to changing 
experimental conditions. 

• CL is shown to be a well-performing 
solution to maintaining performance 
in these kinds of ML models. 

https://cds.cern.ch/record/2859651?ln=en
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REFINING FAST SIMULATION USING ML
➢ Example of usage on jet flavour tagging: 4 NanoAOD DeepJet discriminators.

• Training: SUSY simplified model “T1tttt“ simulated with FastSim and FullSim.
• Model: regression neural network (ResNet).
• Inputs: FastSim variables xFast = 4 DeepJet discriminators.  Parameters y = pT

GEN , ηGEN, true hadron flavor.
• Output: Refined variables xRefi. = 4 DeepJet discriminators.
• Target: FullSim variables xFull = 4 DeepJet discriminators.
• Combine loss terms via MDMM (Modified Differential Method of Multipliers) algorithm.

Talk in CHEP2023

MSE: Mean Squared Error (jet-jet pairs) MMD: Maximum Mean Discrepancy (ensembles)

Considerably improved agreement with FullSim output!!

file:///C:/Users/andre/Desktop/20230511chep_MoritzWolf_Refinement_v2.pdf
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