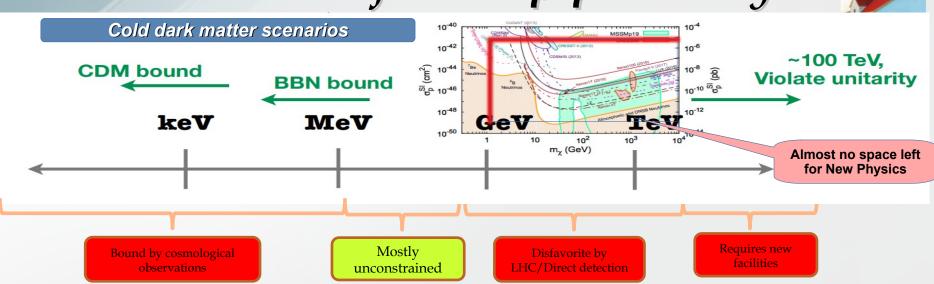
The REDTOP experiment: a η/η' factory **to explore** dark matter and physics beyond the Standard Model


Rare Eta Decays TO Probe New Physics

Corrado Gatto INFN Napoli and Northern Illinois University

ICNFP2023

Rationale for an η/η' Factory

REDTOP

"Light dark matter must be neutral under SM charges, otherwise it would have been discovered at previous colliders" [G. Krnjaic RF6 Meeting, 8/2020]

- The only known particles with all-zero quantum numbers: Q = I = J = S = B = L = 0 are the η/η' mesons and the Higgs boson (also the vacuum!) ->very rare in nature
- The η meson is a Goldstone boson (the η' meson is not!)
- The η/η' decays are flavor-conserving reactions

Experimental advantages:

- Hadronic production cross section is quite large (~ 0.1 barn) \rightarrow easy to produce
- Strong & EM decays are forbidden in lowest order by discrete symmetry invariance. BR of processes from New Physics are enhanced compared to SM.

A η/η' factory is equivalent to a low energy Higgs factory and an excellent laboratory to probe New Physics below 1 GeV

REDTOP Key Points

REDTOP: η/η' yielding ~10¹⁴(10¹²) mesons

 $\mathcal{O}(10^5)$ the existing world sample with a 3-yr run

Hadro-produced mesons: requires a 30W (55W) CW proton beam

Pion beam also well suited

Designed to search for BSM physics in the MeV-GeV region

Main search fields: dark matter and CP-violation

Sensitive to 17MeV resonances

Moderate cost:

\$55M excl. contingency and labor

Main Physics Goals of REDTOP

Test of CP invariance via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^{\circ}\pi^{+}\pi^{-}$ Search for asymmetries in the dalitz plot with very high statistics

Test of CP invariance via μ polarization studies: $\eta \rightarrow \pi^{\circ}\mu^{+}\mu^{-}$, $\eta \rightarrow \gamma\mu^{+}\mu^{-}$, $\eta \rightarrow \mu^{+}\mu^{-}$, Measure the angular asymmetry between spin and momentum

Dark photon searches: $\eta \rightarrow \gamma A'$, with $A' \rightarrow \mu^+ \mu^-$, $A' \rightarrow e^+e^-$ Need excellent vertexing and particle ID

QCD axion and ALP searches: $\eta \rightarrow \pi\pi a$, with $a \rightarrow \gamma\gamma$, $a \rightarrow \mu^+\mu^-$, $a \rightarrow e^+e^-$ Dual (or triple!) calorimeters and vertexing

Dark scalar searches: $\eta \rightarrow \pi^{\circ}H$, with $H \rightarrow \mu^{+}\mu^{-}$, $H \rightarrow e^{+}e^{-}$ Dual (or triple!) calorimeters and particle ID

Lepton Flavor Universality studies: $\eta \rightarrow \mu^+ \mu^- X$, $\eta \rightarrow e^+ e^- X$ Need excellent particle ID

Detecting BSM Physics with REDTOP (η/η' factory)

Assuming a yield ~ 10^{14} η mesons/yr and ~ $10^{12}\eta'$ mesons/yr

C, T, CP-violation	New particles and forces searches
CP Violation via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^{\circ} \pi^{*} \pi$	□ <i>Scalar meson searches (charged channel):</i> $\eta \to \pi^{\circ} H$ with $H \to e^+e^-$ and
\Box <i>CP Violation (Type I – P and T odd , C even):</i> $\eta \rightarrow 4\pi^{\circ} \rightarrow 8\gamma$	$H \rightarrow \mu^+ \mu^-$
□ <i>CP</i> Violation (Type II - C and T odd , P even): $\eta \rightarrow \pi^{\circ} \ell^{*} \ell$ and $\eta \rightarrow 3\gamma$	□ <i>Dark photon searches:</i> $\eta \rightarrow \gamma A'$ with $A' \rightarrow \ell^{+}\ell'$
□ Test of CP invariance via μ longitudinal polarization: $\eta \rightarrow \mu^{+}\mu^{-}$	• Protophobic fifth force searches : $\eta \rightarrow \gamma X_{17}$ with $X_{17} \rightarrow \pi^* \pi^-$
$\Box CP$ inv. via γ^* polarization studies: $\eta \rightarrow \pi^* \pi^- e^+ e^- \mathcal{E}^- \eta \rightarrow \pi^* \pi^- \mu^+ \mu^-$	$\Box QCD$ axion searches : $\eta \rightarrow \pi \pi a_{17}$ with $a_{17} \rightarrow e^+e^-$
□ <i>CP</i> invariance in angular correlation studies: $\eta \rightarrow \mu^+ \mu^- e^+ e^-$	■ <i>New leptophobic baryonic force searches</i> : $\eta \rightarrow \gamma B$ with $B \rightarrow e^+e^-$ or $B \rightarrow \gamma \pi^o$
□ <i>CP</i> invariance in angular correlation studies: $\eta \rightarrow \mu^{+}\mu^{-}\pi^{+}\pi^{-}$	\square Indirect searches for dark photons new gauge bosons and leptoquark: η
CP invariance in μ polar. in studies: $\eta \rightarrow \pi^{\circ} \mu^{+} \mu^{-}$	$\rightarrow \mu^{+}\mu^{-}$ and $\eta \rightarrow e^{+}e^{-}$
$\Box T$ invar. via μ transverse polarization: $\eta \rightarrow \pi^{\circ} \mu^{+} \mu^{-}$ and $\eta \rightarrow \gamma \mu^{+} \mu^{-}$	□Search for true muonium: $\eta \rightarrow \gamma(\mu^+\mu^-) _{2M_{\mu}} \rightarrow \gamma e^+e^-$
$\Box CPT \ violation: \ \mu \ polr. \ in \ \eta \to \pi^* \mu \ v \ vs \ \eta \to \pi^- \mu^* v \ - \ \gamma \ polar. \ in \ \eta \to \gamma \ \gamma$	Lepton Universality
Other discrete symmetry violations	$\Box \eta \to \pi^{\circ} H \text{ with } H \to v N_2 \text{ , } N_2 \to h' N_1 \text{ , } h' \to e^+ e^-$
□Lepton Flavor Violation: $\eta \rightarrow \mu^+ e^- + c.c.$	Other Precision Physics measurements
□ <i>Radiative Lepton Flavor Violation:</i> $\eta \rightarrow \gamma \mu^+ e^- + c.c.$	Proton radius anomaly: $\eta \to \gamma \mu^+ \mu^- vs \eta \to \gamma e^+e^-$
□ <i>Double lepton Flavor Violation:</i> $\eta \rightarrow \mu^{+}\mu^{+}e^{-}e^{-} + c.c.$	\Box All unseen leptonic decay mode of η / η ' (SM predicts 10 ⁻⁶ -10 ⁻⁹)
Non- η/η' based BSM Physics	High precision studies on medium energy physics
$\Box Neutral pion decay: \pi^{\circ} \rightarrow \gamma A' \rightarrow \gamma e^+ e^-$	[□] Nuclear models
$\Box ALP's$ searches in Primakoff processes: $p \ Z \to p \ Z \ a \to l^+l^-$	^D Chiral perturbation theory
□ <i>Charged pion and kaon decays:</i> $\pi^+ \rightarrow \mu^+ v A' \rightarrow \mu^+ v e^+ e^- and K^+ \rightarrow$	□Non-perturbative QCD
$\mu^+ \nu A' \to \mu^+ \nu e^+ e^-$	□Isospin breaking due to the u-d quark mass difference
□ <i>Dark photon and ALP searches in Drell-Yan processes:</i> $qqbar \rightarrow A'/a$ $\rightarrow l^+l^-$	Octet-singlet mixing angle
	Electromagnetic transition form-factors (important input for g-2)

Detecting BSM Physics with REDTOP (η/η' factory)

Assuming a yield ~ 10^{14} η mesons/yr and ~ $10^{12}\eta'$ mesons/yr

C, T, CP-violation	New particles and forces searches
CP Violation via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^{\circ} \pi^{*} \pi$	□ <i>Scalar meson searches (charged channel):</i> $\eta \to \pi^{\circ} H$ with $H \to e^+e^-$ and
□ <i>CP</i> Violation (Type I – P and T odd , C even): η -> $4\pi^{\circ} \rightarrow 8\gamma$	$H \rightarrow \mu^{+} \mu^{-}$
CP Violation (Type II - C and T odd , P even): $\eta \to \pi^{\circ} \ell^{*} \ell$ and $\eta \to 3\gamma$	Dark photon searches: $\eta \to \gamma A'$ with $A' \to \ell^* \ell$
Test of CP invariance via μ longitudinal polarization: $\eta \rightarrow \mu^{+}\mu^{-}$	□ <i>Protophobic fifth force searches</i> : $\eta \rightarrow \gamma X_{17}$ <i>with</i> $X_{17} \rightarrow \pi^{t} \pi^{-}$
$\Box CP \text{ inv. via } \gamma * \text{ polarization studies:} \eta \to \pi^* \pi^- e^+ e^- \mathcal{E} \eta \to \pi^* \pi^- \mu^* \mu^-$	□ <i>QCD</i> axion searches : $\eta \rightarrow \pi \pi a_{17}$ with $a_{17} \rightarrow e^+e^-$
$\Box CP$ invariance in angular correlation studies: $\eta \rightarrow \mu^+ \mu^- e^+ e^-$	■ <i>New leptophobic baryonic force searches</i> : $\eta \rightarrow \gamma B$ with $B \rightarrow e^+e^-$ or $B \rightarrow \gamma \pi^\circ$
CP invariance in angular correlation studies: $\eta \rightarrow \mu^+ \mu^- \pi^+ \pi^-$	Indirect searches for dark photons new gauge bosons and leptoquark: η
CP invariance in point with the second se	
• T invar. via μ transferse polarize ion: $\eta \to \pi^{\mu} \mu^{\mu}$ and $\eta \to \gamma \mu^{\mu} \mu^{\mu}$	$I = 2M_{\mu} \rightarrow e$
CPT viola tion: μ polar m_1 π μ μ γ γ polar in $n \rightarrow \gamma$	PLepton Universality
• CPT violation: μ polar in $p \rightarrow \pi \mu^{+} \gamma - \gamma$ polar in $p \rightarrow \gamma^{+} \gamma$ Other ascrete sympletry ovolutions	
Lepton Flavor Violation: $\eta \rightarrow \mu^+ e^- + c.c.$	Other Precision Physics measurements
■Lepton Flavor Violation: $\eta \rightarrow \mu^+ e^- + c.c.$ ■Radiative Lepton Flavor Violation: $\eta \rightarrow \gamma \mu^+ e^- + c$ BSM	$\mathbf{Y} = \mathbf{y} = $
Double lepton Flavor Violation: $\eta \rightarrow \mu^+ \mu^+ e^- e^- + c.c.$	\Box All unseen leptonic decay mode of η / η ' (SM predicts 10 ⁻⁶ -10 ⁻⁹)
Non-η/η′ based BSM Physics	High precision studies on medium energy physics
$\Box Neutral pion decay: \pi^{\circ} \to \gamma A' \to \gamma e^+ e^-$	Nuclear models
$\square ALP's$ searches in Primakoff processes: $p Z \rightarrow p Z a \rightarrow l^+l^-$	Chiral perturbation theory
Charged pion and kaon decays: $\pi^+ \to \mu^+ \vee A' \to \mu^+ \vee e^+e^-$ and $K^+ \to \mu^+ \vee e^+e^-$	■Non-perturbative QCD
$\mu^+ v A' \to \mu^+ v e^+ e^-$	□Isospin breaking due to the u-d quark mass difference
□Dark photon and ALP searches in Drell-Yan processes: qqbar \rightarrow A'/a \rightarrow l ⁺ l ⁻	^D Octet-singlet mixing angle
	Delectromagnetic transition form-factors (important input for g-2)

The physics case for REDTOP

Physics case presented in 176-pp White Paper. Sensitivity studies based on ~10¹⁴ η mesons (3.3x10¹⁸ POT and 3-yr run), >30x10⁶ CPU-Hr on OSG+NICADD

15 processes fully simulated and reconstructed – 20 theoretical models benchmarked

- Four BSM portals
- Three CP violating processes requiring no μ -polarization measurement
- A fourth CP violating processes under study
- Three CP violating processes requiring μ -polarization measurement
- Two lepton flavor universality studies
- Two lepton flavor violation studies

Key detector parameters

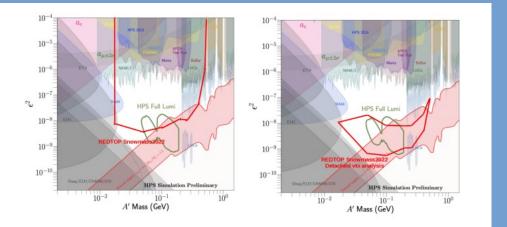
- Large sensitivity to <17 Mev mass resonances (compared to WASA and KLOE)
- Tracking capable to reconstruct detached verteces up to ~100 cm
- Sensitivity to BR ~ $\mathcal{O}(10^{-11})$ (~ $\mathcal{O}(10^{-12})$ with pion beam)
- Detector optimization under way

New particles REDTOP & forces Vector Portal: $\eta \rightarrow \gamma A'$ with $A' \rightarrow l^+l^-$ or $\pi^+\pi^-$ Some BR sensitivity curves ctau=20mm ctau=20mm ctau=40mm ctau=40mm ×10-7 ctau=100mm ctau=100mm Prompt B decay ctau=150mm ctau=150mm 3.0 $A' \rightarrow e^+e^-$ 2.9 2.8 2.7-10-8 $B \rightarrow \pi^+\pi^ A' \rightarrow \mu^+ \mu^-$ 2.6-2.5

350

mu+mu-Invariant mass [MeV]

450


500

2.4-2.3-2.2-2.1

1.7 1.6 1.5 1.4 1.3 1.2 1.1-1.0

0.9 0.8 0.7 0.6

0.5 300 320 340 360 380 400 420 440 460

Sensitivity curves for Minimal Dark Photon Model

10-9

10-10

250

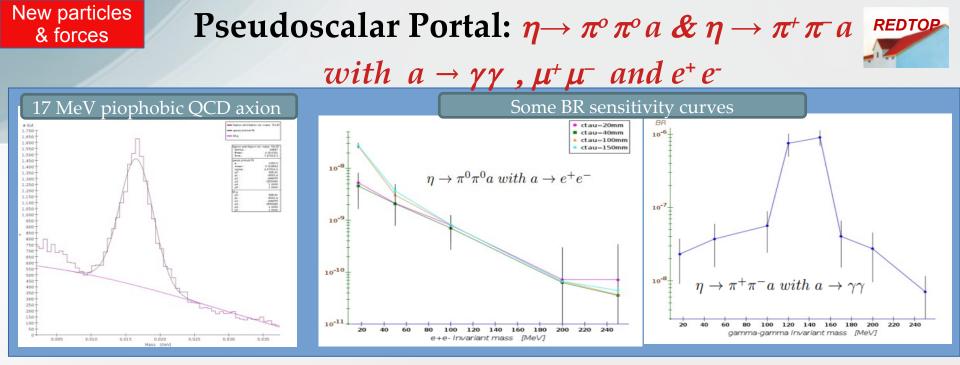
FIG. 36. Sensitivity to to ε^2 for the processes $\eta \to \gamma A'$ for integrated beam flux of 3.3×10^{18} POT. Left plot: bump-hunt analysis. Right plot: detached-vertex analysis).

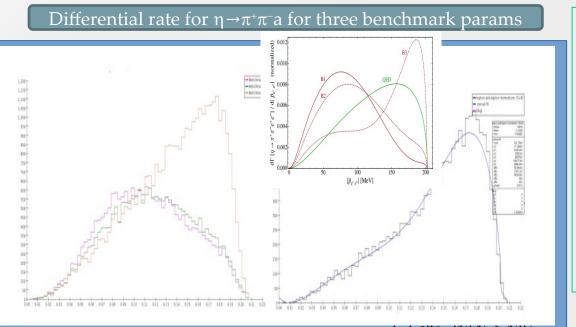
Theoretical Models considered

pi+pi- Invariant mass [MeV]

- Minimal dark photon model
 - *Most popular model*
- Leptophobic B boson Model
- Protophobic Fifth Force
 - *Explains the Atomki anomaly*

10-8

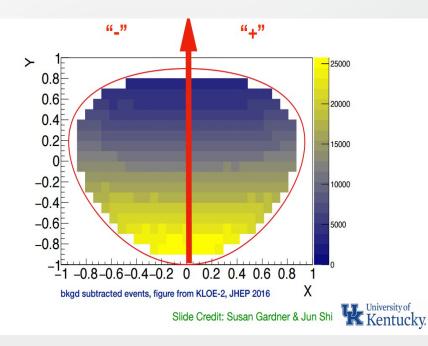

10-9


10-10

150

250 300 350 400 450

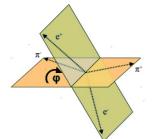
e+e-Invariant mass [MeV]


Theoretical models considered

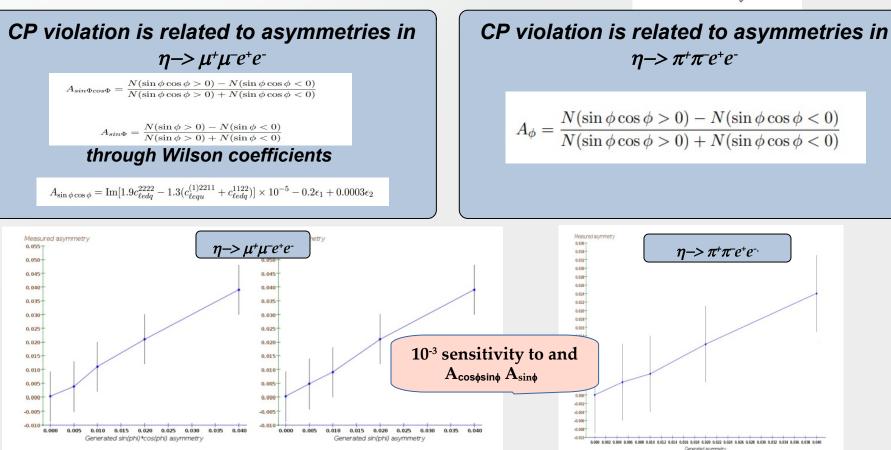
- Piophobic QCD axion model (D. S. M. Alves)
 - Below KLOE sensitivity
 - the CELSIUS/WASA Collaboration observed 24 evts with SM expectation of 10
- Heavy Axion Effective Theories

CP Violation from Dalitz plot mirror asymmetry in $\eta \rightarrow \pi^+ \pi^- \pi^0$

- **CP**-violation from this process is not bounded by EDM as is the case for the $\eta \rightarrow 4\pi$ process.
- **Complementary to EDM searches even in the case of T and P odd observables, since the flavor structure of the eta is different from the nucleus**
- *Current PDG limits consistent with no asymmetry*
- □ *New model in GenieHad (collaboration with S. Gardner & J. Shi) based on* <u>https://arxiv.org/abs/1903.11617</u>



#Rec. Events	$\operatorname{Re}(\alpha)$	$\operatorname{Im}(\alpha)$	$\operatorname{Re}(\beta)$	$\operatorname{Im}(\beta)$	p-value
				5.6×10^{-4}	
				3.2×10^{-5}	
Full stat. (100%-bkg)	$2.3 imes 10^{-2}$	$3.0 imes 10^{-2}$	$3.5 imes 10^{-5}$	4.5×10^{-5}	16%



CP Violation from the asymmetry of the decay planes in $\eta \rightarrow \mu^+\mu^-e^+e^-$ and $\eta \rightarrow \pi^+\pi^-e^+e^-$

- See: Dao-Neng Gao, /hep-ph/0202002 and P. Sanchez-Puertas, JHEP 01, 031 (2019)
- Requires the measurement of angle between pions and leptons decay planes

. .

C. Gatto - INFN & NIU

CP Violation in $\eta \rightarrow (\gamma, \pi^{\circ})\mu^{+}\mu^{-}$

From model: P. *Masjuan and* P. *Sanchez-Puertas, JHEP 08, 108 (2016), 1512.09292 & JHEP 01, 031 (2019), 1810.13228.*

 \Box Requires the measurement of μ -polarization to form the following asymmetries

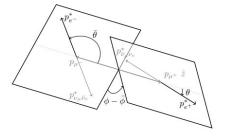


FIG. 11. Kinematics of the process. The decaying muons' momenta in the η rest frame are noted as $p_{\mu^{\pm}}$, while the e^{\pm} momenta, $p_{e^{\pm}}^*$, is shown in the corresponding μ^{\pm} reference frame along with the momenta of the $\nu \bar{\nu}$ system. The \hat{z} axis is chosen along p_{μ^+} .

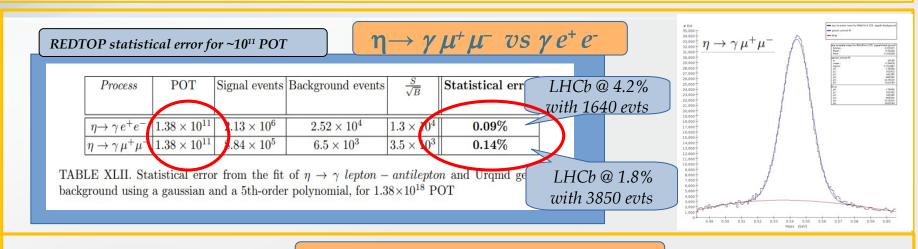
introduced two different muon's polarization asymmetries,

$$A_{L} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N} = \text{Im}[4.1c_{\ell edq}^{2222} - 2.7(c_{\ell equ}^{(1)2211} + c_{\ell edq}^{2211})] \times 10^{-2}, \quad (47)$$

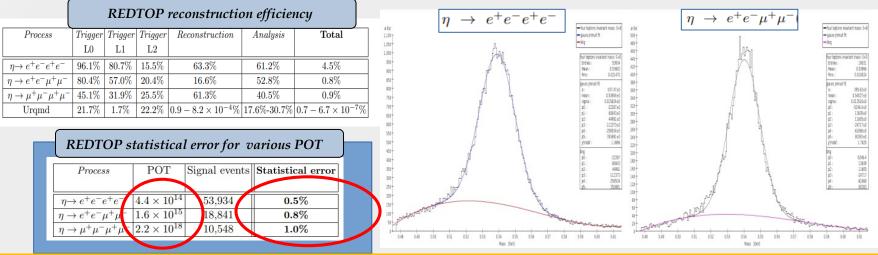
$$A_{\times} = \frac{N(\sin\Phi > 0) - N(\sin\Phi < 0)}{N} = \text{Im}[2.5c_{\ell edq}^{2222} - 1.6(c_{\ell equ}^{(1)2211} + c_{\ell edq}^{2211})] \times 10^{-3}, \quad (48)$$

REDTOP sensitivity to Wilson CP violating Wilson coefficients

Process	Trigger	Trigger	Trigger	Reconstruction	Total	Branching ratio
	L0	L1	L2	+ analysis		sensitivity
$\eta \to \mu^+ \mu^-$	66.3 %	16.3%	51.9%	69.6%	3.9%	$2.7 \times 10^{-8} \pm 3.0 \times 10^{-10}$
Urqmd	21.7%	1.7%	22.2%	$8.6\times10^{-3}\%$	$7.0\times10^{-6}\%$	-

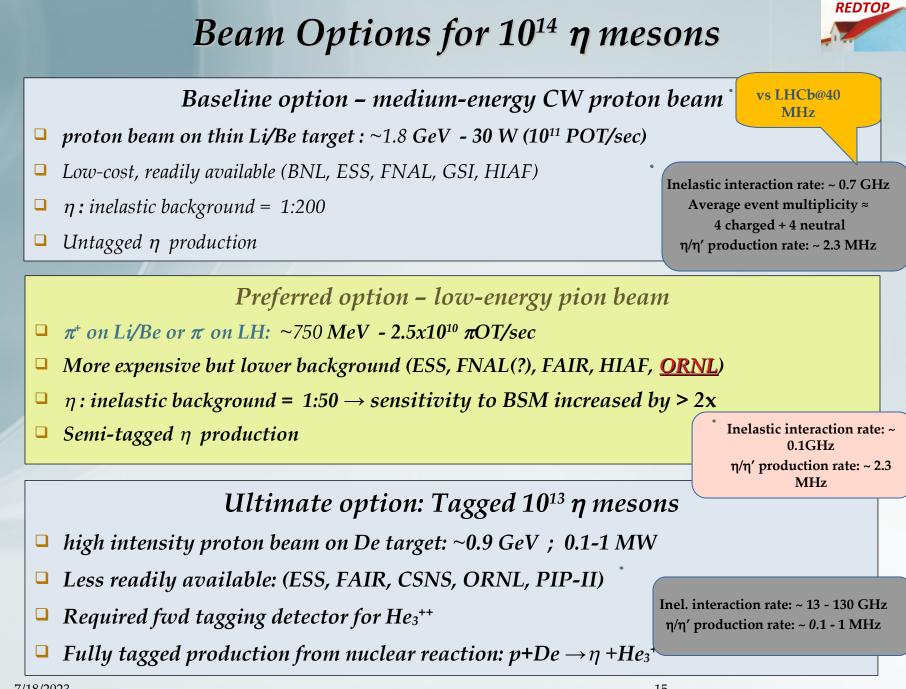

 $\Delta(c_{\ell equ}^{1122}) = 0.1 \times 10^{-1}, \quad \Delta(c_{\ell edq}^{1122}) = 0.1, \quad \Delta(c_{\ell edq}^{2222}) = 6.6 \times 10^{-2},$

12


Lepton Universality Studies

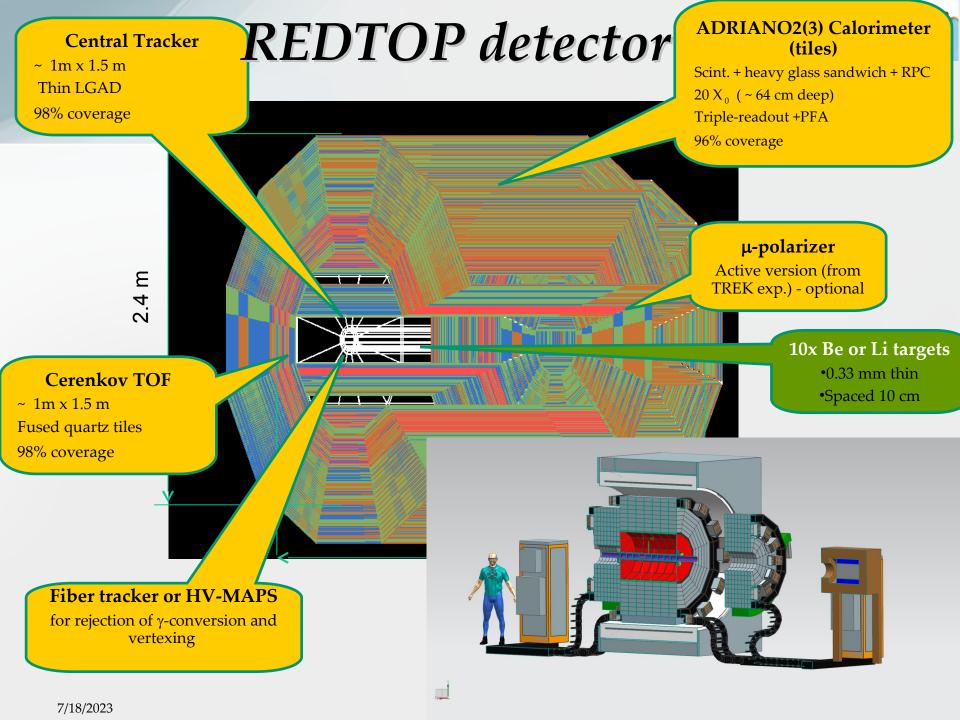
LHCb latest results using $B^{+} \rightarrow \mu^{+}\mu^{-}K^{+} \cdot s \cdot e^{+}e^{-}K^{+} \cdot 3.1\sigma$ discrepancy vs SM

 $\eta
ightarrow \mu^+ \mu^- \mu^+ \mu^-$, $e^+ e^- \mu^+ \mu^-$, $e^+ e^- e^+ e^-$

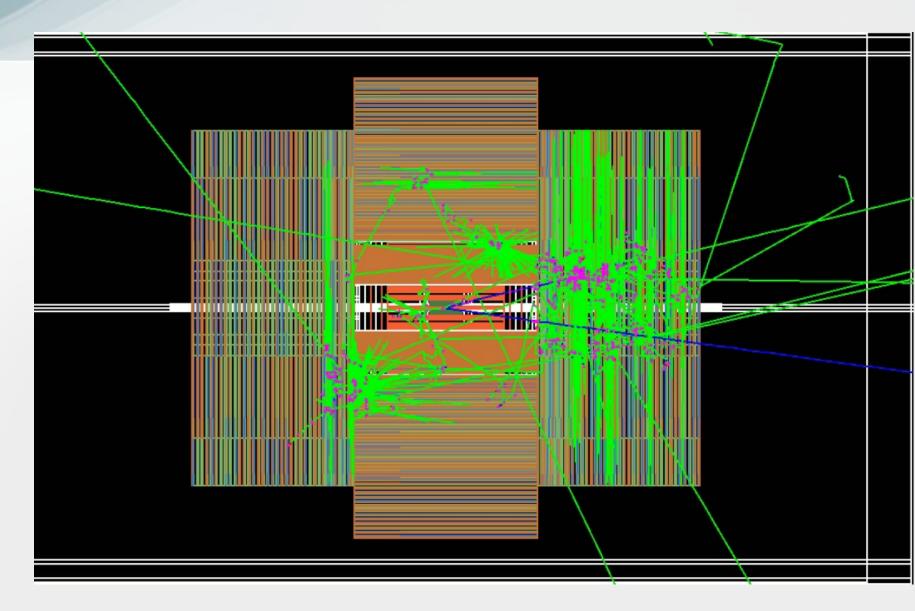

□ *Theoretical calculations at the 10⁻³ precision from Kampf, Novotný, Sanchez-Puertas (PR D 97, 056010 (2018))*

Present & Future η Samples

	Technique	$\eta \rightarrow 3\pi^{o}$	$\eta ightarrow e^+e^-\gamma$	Total η mesons
CB@AGS	$\pi p \rightarrow \eta n$	9×10 ⁵		107
CB@MAMI C&B	$\gamma p ightarrow \eta p$	1.8×10 ⁶	5000	$2 \times 10^7 + 6 \times 10^7$
BES-III	$e^+e^- \rightarrow J/\psi \rightarrow \eta\gamma + \eta$ hadrons	6×10 ⁶		1.1×10 ⁷ + 2.5×10 ⁷
KLOE-II	$e + e - \rightarrow \Phi \rightarrow \eta \gamma$	6.5×10 ⁵		~10 ⁹
WASA@COSY	$pp \rightarrow \eta pp$ $pd \rightarrow \eta ^{3}He$			>10º (untagged) 3×10 ⁷ (tagged)
CB@MAMI 10 wk (proposed 2014)	$\gamma p ightarrow \eta p$	3×10 ⁷	1.5×10 ⁵	3×10 ⁸
Phenix	$d Au \rightarrow \eta X$			5×10 ⁹
Hades	$pp \rightarrow \eta pp \\ p Au \rightarrow \eta X$			4.5×10 ⁸
	Near future	e samples		
GlueX@JLAB (running)	$\gamma_{12 \text{ GeV}} p \rightarrow \eta X \rightarrow neutrals$			5.5×10 ⁷ /yr
JEF@JLAB (approved)	$\gamma_{12 \text{ GeV}} p \rightarrow \eta X \rightarrow neutrals$			3.9×10⁵/day
REDTOP (proposing)	$p_{{\scriptscriptstyle 1.8~GeV}}Li o \eta X$			3.4×10 ¹³ /yr


Detector Requirements and Technology

REDTOP


- Sustain up to 0.7 GHz event rate with avg final state multiplicity of ~8 particles
- Calorimetric $\sigma(E)/E \sim 2-3\%/\sqrt{E}$
- High PID efficiency: 98/99% (e, γ), 95% (μ), 95% (π), 99.5%(p,n)
- $\sigma_{tracker}(t) \sim 30 psec, \sigma_{calorimeter}(t) \sim 80 psec, \sigma_{TOF}(t) \sim 50 psec$
- Low-mass vertex detector
- Near- 4π detector acceptance (as the η/η' decay is almost at rest).

charged tracks detection	<u>EM + had calorimeter</u>
LGAD Tracker	□ ADRIANO2 calorimeter (Calice+T1604)
4D track reconstruction for multihadron	ADRIANO3 rear section with Fe absorbers
rejection	PFA + Dual-readout+HG
Material budget < 0.1% r.l./layer	Light sensors: SiPM or SPADs
	96.5% coverage
Vertex reconstruction	<u>Cerenkov Threshold TOF</u>
Option 1: Fiber tracker (LHCb style)	Option 1: Quartz tiles
Established and low-cost technology	
70 una monton appolation in a su Storage laura	Established and low-cost technology
\square ~70µm vertex resolution in x-y. Stereo layers	 Established and low-cost technology ~50psec timing with T1604 prototype
Option 2: HV-MAPS (Mu3e style)	
	~50psec timing with T1604 prototype

C. Gatto - INFN & NIU

$\eta \rightarrow \gamma A'$ with $A' \rightarrow e^+e^-$ event in REDTOP

Cost estimate (\$2022) Preliminary

REDTOP

- Three funding scenarios considered
- Largest cost uncertainties
 - ADRIANO2 SiPM's (2x10⁶ 4x10⁶)
 - LGAD mechanics

No labor considered (usually, 1/3 of the total)

	Baseline option	Optimized option	Expensive option
Target+beam pipe	0.5	0.5	0.9
Vtx detector	0.93	3.11	25.4
LGAD tracker	18.5	18.5	19.6
CTOF	0.6	1.3	3.0
ADRIANO2	47.7	23.9	4''.7
Solenoid	0.2	0.2	0.2
Supporting structure	1	1	1
Trigger	1.3	1.3	5
DAQ	5	5	5
Total	69.7	54.8	101.8
Contingency 50%	34.9	27.4	50.9
Grand total	104.6	82.2	192.7

Cost estimate (\$2022) ^{reliminary}

REDTOP

- Three funding scenarios considered
- Largest cost uncertainties
 - ADRIANO2 SiPM's (2x10⁶ 4x10⁶)
 - LGAD mechanics

No labor considered (usually, 1/3 of the total) Cost optimization is in progress option

Based on sensitivity studies for

Snowmass 2022

CTOF	0.6		3.0
ADRIANO2	47.7		4''.7
Solenoid	0.2		0.2
Supporting structure	1		1
Trigger	1.3		5
DAQ	5	5	5
Total	69.7	54.8	101.8
Contingency 50%	34.9	27.4	50.9
Grand total	104.6	82.2	152.7

REDTOP Collaboration

J. Barn, A. Mane Argonnie National Laborationy, (USA)

J. Comfort, P. Mauskopf, D. McFarland, L. Thomas Arizona State University, (USA)

I. Pedraza, D. Leon, S. Escobar, D. Herrera, D. Silverio Benemérita Universidad Autónoma de Puebla, (Mexico)

W. Abdallah Faculty of Science, Cairo University, Giza, (Egypt)

D. Winn Fairfield University, (USA)

A. Alqahtani Georgetown University, (USA)

W. Abdallah Cairo University, Cairo (Egypt)

A. Kotwal Duke University, (USA)

M. Spannowski Durham University, (UK)

A. Liu Euclid Techlabs, (USA)

J. Dey, V. Di Benedetto, B. Dobrescu, D. Fagan, E. Gianfelice-Wendt, E. Hahn, D. Jensen, C. Johnstone, J. Johnstone, J. Kilmer, G.Krajaio, T. Kobilaroik, A. Kronfeld, K. Krempetz, S. Los, M. May, A. Mazzaoane, N. Mokhov, W. Pellico, A. Pla-Dalmau, V. Pronskikh, E. Ramberg, J. Rauch, L. Ristori, E. Schmidt, G. Sellberg, G. Tassotto, Y.D. Tsai

Fermi National Accelerator Laboratory, (USA)

J. Shi Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, I, Guangzhou 510006, (China)

R. Gandhi Harish-Chandra Research Institute, HBNI, Jhunsi (India)

S. Homiller Harvard University, Cambridge, MA (USA)

E. Pasisamar Indiana University (USA)

P. Sanchez-Puertas IFAE – Barcelona (Spain)

X. Chen, Q. Hu Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China)

C. Gatto¹¹ Istituto Nazionale di Fisica Nucleare – Sezione di Napoli, (Italy)

W. Baldini Istituto Nazionale di Fisica Nucleare – Sezione di Ferrara, (Italy)

R. Carosi, A. Kievsky, M. Miviani Istituto Nazionale di Fisica Nucleare – Sezione di Pisa, (Italy)

W. Krzemień, M. Silarski, M. Zielinski Jagiellonian University, Krakow, (Poland)

D. Guadagnoli Laboratoire d'Annecy-le-Meux de Physique Théorique, (France)

D. S. M. Alves, S. Gonzalez-Solis de la Fuente, S. Pastore Los Alamos National Laboratory, (USA)

M. Berlowski National Centre for Nuclear Research – Warsaw, (Poland)

G. Blazey, A. Dychkant, K. Francis, M. Syphers, V. Zutshii, P. Chintalapati, T. Malla, M. Figora, T. Fletcher Northern Illinois University, (USA)

A. Ismail Oklahoma State University, (USA)

D. Egaña-Ugrinovic

Perimeter Institute for Theoretical Physisos - Waterloo, (Canada) S. Rov

Physical Research Laboratory, Ahmedabad – Ahmedabad, (India)

Y. Kahn Princeton University – Princeton, (USA)

D. McKeen TRIUMF (Canada)

Z. Ye Tsinghua University, (China)

P. Meade Stony Brook University - New York, (USA)

A. Gutiémez-Rodriguez, M. A. Hemandez-Ruiz Universidad Autónoma de Zacatecas, (Mexico)

R. Escribano, P. Masjuan, E. Royo Universitat Autònoma de Barcelona, Departament de Física and Institut de Física d'Attes Energies, (Spain)

J. Jaeckel Universität Heidelberg, (Germany)

B. Kubis Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, (Germany)

C. Siligardi, S. Barbi, C. Mugoni Università di Modena e Reggio Emilia, (Italy)

L. E. Marcucci* Universita' di Pisa, (Italy)

M. Guida³ Università di Salemo, (Italy)

S. Charlebois, J. F. Pratte Université de Sherbrooke, (Canada)

L. Harland-Lang University of Oxford, (UK)

J. M. Berryman University of California Berkeley, (USA)

S. Gori University of California Santa Cruz, (USA)

R. Gardner, P. Paschos University of Chicago, (USA)

J. Konisberg University of Florida, (USA)

C. Mills⁵ University of Illinois Chicago, (USA)

M. Murray, C. Rogan, C. Royon, Nicola Minafra, A. Novikov, F. Gautier, T. Isidori University of Kansas, (USA)

S. Gardner, X. Yan University of Kentucky, (USA)

Y. Onel University of Iowa, (USA)

B. Batell, A. Freitas, M. Rai University of Pittsburgh, (USA)

M. Pospelov University of Minnesota, (USA)

University of Science and Technology of China, (China)

K. Maamari tier Meeting - C. Gatto ^{US}INFN & NIU

A. Kupso, Maja Olvegård University of Uppsala, (Sweden)

B. Fabela-Enriquez Vanderbilt University, (USA)

S. Tulin York University, (Canada)

15 Countries 58 Institutions 128 Collaborators

Future Prospects for REDTOP

Baseline detector layout defined (with options for vtx and µpol detectors)

- Sensitivity studies helped to consolidate the detector requirements and to drive cost optimization
- VTX Fiber Tracker replaced by HV-MAPS detector
- Muon polarimeter requires further studies

Next steps:

- Initial funding from US agencies (mid-RI proposal \$2-10M)
- Prepare a CDR to support the proposal of the experiment to one (or more) of the interested laboratories
- Consolidate the detector R&D (ongoing)

Conclusions

- HEP in the next 10 years will focus strongly on the MeV-GeV region
- All meson factories: LHCb, B-factories, Dafne, J/psi have produced a broad spectrum of nice physics. An η / η' factory will do the same
- **REDTOP** has been designed expressely to study rare processes and to discover physics BSM in the MeV-GeV mass region
- Only experiment (with SHIP) sensitive to all four DM portals
- Very large physics reach for NP as well
- New detector techniques benefit the next generation of high intensity experiments
- Beam requirements could be met by several labs in US, Europe, and Asia
 - Before 2030: HIAF and GSI
 - After 2030: Fermilab and ESS

More details: <u>https://redtop.fnal.gov</u> and <u>https://arxiv.org/abs/2203.07651</u>

Backup Slides

Why the η meson is special?

It is a Goldstone boson

- It is an eigenstate of the C, P, CP and G operators (very rare in nature): I^G J^{PC} =0⁺ 0⁻⁺
- All its additive quantum numbers are zero

Q = I = j = S = B = L = 0

- All its possible strong decays are forbidden in lowest order by P and CP invariance, G-parity conservation and isospin and charge symmetry invariance.
- EM decays are forbidden in lowest order by C
- invariance and angular momentum conservation

```
Symmetry constrains its QCD dynamics
```

It can be used to test C and CP invariance.

Its decays are not influenced by a change of flavor (as in K decays) and violations are "pure"

It is a very narrow state (Γ_{η} =1.3 KeV vs Γ_{ρ} =149 MeV)

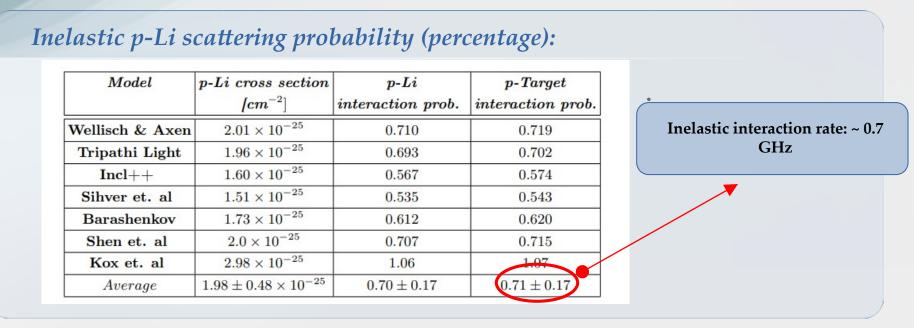
Contributions from higher orders are enhanced by a factor of ~100,000

Decays are free of SM backgrounds for

Excellent for testing invariances

The η decays are flavor-conserving reactions

 η is an excellent laboratory to search for physics Beyond Standard Model


5/28/2023

Rare Frontier.MaattingINE.NGaatoHUNFN & NIU

26

η/η' yield and background evaluation

Evaluation of η/η' yield for 3.3x10¹⁸ POT (3.3 years running at 1x10¹⁸ POT/yr)

Nuclear collision model					
	η yield				2
Urqmd [208]	0.49%	Total	yield for $E_{kin} = 1.8 \text{ GeV}$	-	for $E_{kin} = 3.6 \text{ GeV}$
Incl++ v6.2 [209]	1.48%	N_{η}	1.1×10^{14}		0.9×10^{14}
Gibuu v2019 [210]	0.74%	$N_{\eta'}$	• 0	- 11	7.9×10^{11}
PHSD v 4.0 [211]	0.67%	N_{ni}	2.5×10^{16}	$ N_{ni} $ 3	3.2×10^{16}
Jam v1.9 [212]	0.26%		,T		`
Average	$(0.73 \pm 0.46)\%$		η/η' production rat	te: ~ 2.3 MHz	

Simulation Framework For Physics&Detector Studies

Event generator: GenieHad

- Proprietary (not yet public) package interfacing standalone generators to

Package	Model	Туре
Urqmd [210]	QMD	Microscopic many body approach
Incl++ v6.2 [211]	INCL	Intranuclear cascade
Gibuu v2019 [212]	BUU	time evolution of Kadanoff–Baym-equations
PHSD v 4.0 [213]	HSD	covariant transport with NJL-type Lagrangian
Jam v1.9 [214]	Cascade/RQMD.RMF/BUU	Multi-model - hybrid approach
Dpmjet-III [240]	Dual Parton/ perturbative QCD	Multi-model approach
Pythia 7, 8[239]	LUND	string hadronization model
IAEA tables[241]	LUT of measured cross sections	Look-up tables based on ENDF (by IAEA)
Intranuke[242]	Parametric	
ALPACA[243]	Alpaca	Bremsstrahlung of Axion-Like-Particles (ALP)

Simulation: slic

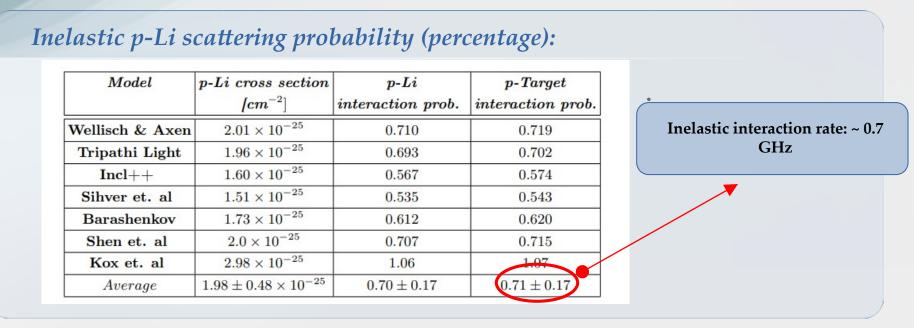
genie

- Geant4 interface from SLAC
- Proprietary adds-on for REDTOP specific detectors

Digitization, reconstruction, analysis: lcsim

- Java package from ILC and HPS (jlab)
- Geometry adds-on for REDTOP specific detectors, beam components, and magnetic fields
- Histograms and fitting in Jas3, Jas4app

Some Signal vs Background Acceptance


□*Values from White Paper*

□QCD background at TL2: 8x10⁻⁴

Efficiencies and BR sensitivities calculated after reconstruction and analysis
 Values are very dependence on BSM mass and width

Process	Eff(Bkg)	Eff(signal)	BR sensitivity
$\eta \to \gamma A'$; $A' \to \ e^+ e^-$	3x10 ⁻¹⁰ - 4x10 ⁻⁷	8%-22%	1x10 ⁻⁹ -2x10 ⁻⁸
$\eta \rightarrow \gamma A'$; $A' \rightarrow \ \mu^+ \mu^-$	1x10 ⁻¹¹ -6x10 ⁻⁸	6%-42%	1x10 ⁻¹⁰ -2x10 ⁻⁹
$\eta \rightarrow \pi^0 h$; $h \rightarrow e^+ e^-$	3x10 ⁻¹¹ - ⁸ x10 ⁻⁸	1%-16%	4x10 ⁻¹⁰ -7x10 ⁻⁸
$\eta \rightarrow \pi^0 h$; $h \rightarrow \ \mu^+ \mu^-$	2x10 ⁻¹¹ -1x10 ⁻⁸	6%-18%	7x10 ⁻¹¹ -4x10 ⁻⁹
$\eta \rightarrow \pi^0 \pi^0 alp$; $alp \rightarrow e^+e^-$	2x10 ⁻¹¹ -1x10 ⁻¹⁰	0.2%-2.8%	2x10 ⁻¹¹ -2.7x10 ⁻⁸
$\eta \rightarrow \pi^+ \pi^- axion(17 \text{ MeV});$ axion $\rightarrow e^+ e^-$	2.3x10 ⁻⁸	3.0%-3.7%	1.6x10 ⁻⁸ -2.1x10 ⁻⁸
$\eta \to \pi^+ \pi^- alp$; $alp \to \gamma \gamma$	1x10 ⁻¹⁰ -4x10 ⁻⁸	0.6%-1.4%	7x10 ⁻⁹ -5x10 ⁻⁸
$\begin{split} \eta &\rightarrow \pi^0 H \ ; \ H \rightarrow \ \nu N_2; \ N_2 \rightarrow \\ N_1 h \ ; \ h \rightarrow \ e^+ e^- \end{split}$	6.8x10 ⁻⁷	1.2%	2.7x10 ⁻⁷

η/η' yield and background evaluation

Evaluation of η/η' yield for 3.3x10¹⁸ POT (3.3 years running at 1x10¹⁸ POT/yr)

Nuclear collision model					
	η yield				2
Urqmd [208]	0.49%	Total	yield for $E_{kin} = 1.8 \text{ GeV}$	-	for $E_{kin} = 3.6 \text{ GeV}$
Incl++ v6.2 [209]	1.48%	N_{η}	1.1×10^{14}		0.9×10^{14}
Gibuu v2019 [210]	0.74%	$N_{\eta'}$	• 0	- 11	7.9×10^{11}
PHSD v 4.0 [211]	0.67%	N_{ni}	2.5×10^{16}	$ N_{ni} $ 3	3.2×10^{16}
Jam v1.9 [212]	0.26%		Ţ		`
Average	$(0.73 \pm 0.46)\%$		η/η' production rat	te: ~ 2.3 MHz	

Montecarlo generation of QCD background

Generators comparison

- □ Generate and reconstruct ~ $2x10^9$ p+li → X inelastic events with Incl++ (v6) and Urqmd (v5.3)
- *Results where within statistical uncrtainties*
- □ *Urqmd was selected for its higher reliability at ~2-3 GeV*

QCD Production

- \Box 5x10¹⁰ events where generated for the White Paper
- \Box 50x10⁶ wall-hr cpu over a two-year period (mostly on the OSG)

Source	Storage	#core available	Jobs/yr	Wall hr/yr	Fraction
OSG	100 TB (with peaks of 140 TB)	opportunistic	7x10 ⁶	14x10 ⁶	72%
NICADD	15 TB	500-690	4x10 ⁶	5x10 ⁶	26%
Fermilab- AD	200 TB	350	300K	600K	2%

Ring Optics through Deceleration (J. Johnstone)

Transition is avoided by using select quad triplets to boost γ t above beam γ by 0.5 units throughout deceleration until γ_t = 7.64 and beam γ = 7.14 (5.76 GeV kinetic).

10.0 $\gamma_{t} = 10.03$ 7.5 $(m^{1/2})$ (B 5.0 $\sqrt{\beta_y}$ β_x 2.5 0.0 -2.5100 200 400 500 300 Path Length (m) 10. $\gamma_{t} = 7.64$ 7.5 $(m^{1/2})$ (E 5.0 $\sqrt{\beta_y}$ η_y saahahahahahahahahahahahahak xxAêhêhêhêhêhêhêhêhêhêhêhêhêhêhêh ηx NUMUNIANA β_x 2.5 0.0 ٨٨٨٨٨٨٨٨ -2.5500 0 100 200 300 400

Path Length (m)

Below 5.76 GeV the DR lattice reverts to the nominal design configuration

8 GeV injection energy (top) and <5.8 GeV (bottom)

Blue & red circles indicate sites of the γ_t quad triplets.

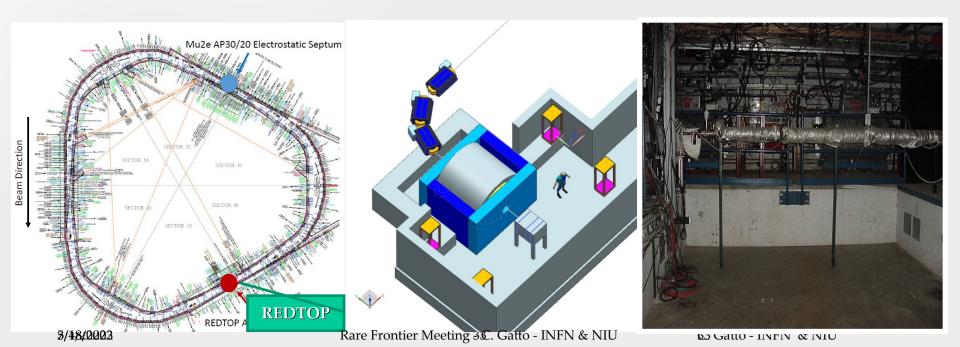
р	8.89	8.33	7.76	7.20	6.63
(GeV/c)					
KE (GeV)	8.00	7.45	6.88	6.32	5.76
γβεαμ	9.53	8.93	8.33	7.74	7.14
γ transition	10.03	9.43	<mark>8.8</mark> 3	7.74	7.64
$\beta_{max}(m)$	94.9	72.5	49.5	30.1	15.1
q (m⁻¹)	.0697	.0573	.0416	.0236	0.0
3σ (mm)	15.0	13.6	11.6	9.4	6.9

Variation of , $\beta_{\rm max}$, and the 15 π 99% beam envelope through deceleration

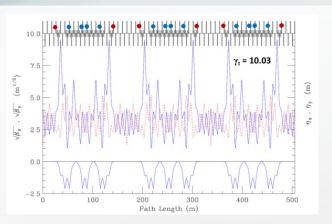
"J.Johnstone, M.Syphers, NA-PAC, Chicago (2016)"

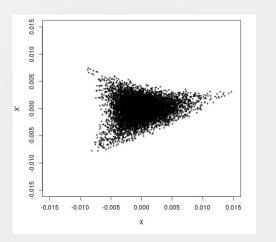
o - INFN & NIU

Acceleration Scheme for Run-I (M. Syphers)


Single p pulse from booster ($\leq 4x10^{12}$ p) injected in the DR (former debuncher in anti-p production at Tevatron) at fixed energy (8 GeV)

Energy is removed by inserting 1 or 2 RF cavities identical to the one already planned (~5 seconds)


Slow extraction to REDTOP over ~40 seconds.


The 270° of betatron phase advance between the Mu2e Electrostatic Septum and REDTOP Lambertson is ideal for AP50 extraction to the inside of the ring.

Total time to decelerate-debunch-extract: 51 sec: duty cycle ~80%

Accelerator Physics Issues

Transition Energy

- γ_t is where $\Delta f/f = 1/\gamma_2 \langle D/\rho \rangle = 0$; synchrotron motion stops momentarily, can often lead to beam loss
- beam decelerates from $\gamma = 9.5$ to $\gamma = 3.1$
- original Delivery Ring $\gamma_t = 7.6$
- a re-powering of 18 quadrupole magnets can create
 - a $\gamma_t = 10$, thus avoiding passing through this condition
 - · Johnstone and Syphers, Proc. NA-PAC 2016, Chicago (2016).

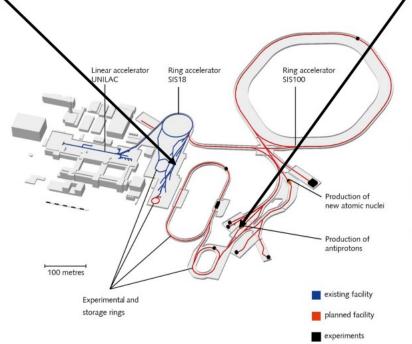
Resonant Extraction

- Mu2e will use 1/3-integer resonant extraction
- REDTOP can use same system, with use of the spare Mu2e magnetic septum
- initial calculations indicate sufficient phase space, even with the larger beam at the lower energies

Vacuum

- REDTOP spill time is much longer than for Mu2e
- though beam-gas scattering emittance growth rate 3 times higher at lower energy, still tolerable level

Beam Options at GSI/FAIR (near future)


Opportunities as fixt target exp.

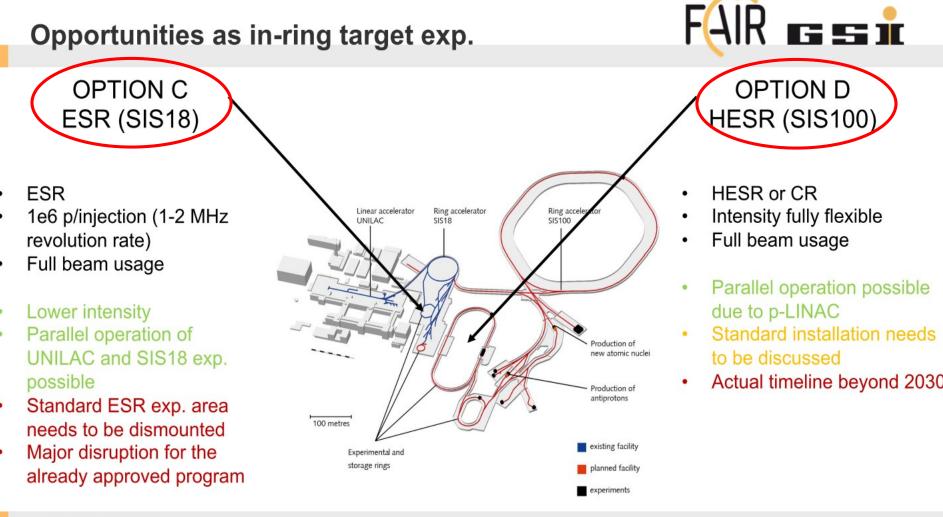
OPTION A

Fixt target (SIS18)

- 1e11 p/spill (time structure flexible) at SIS18
- Residual beam might be used for Hades pion program
- Additional shielding and cave need to be evaluated
- High intensity needs exclusive proton operation

OPTION B Fixt target (SIS100)

FAIR E = i

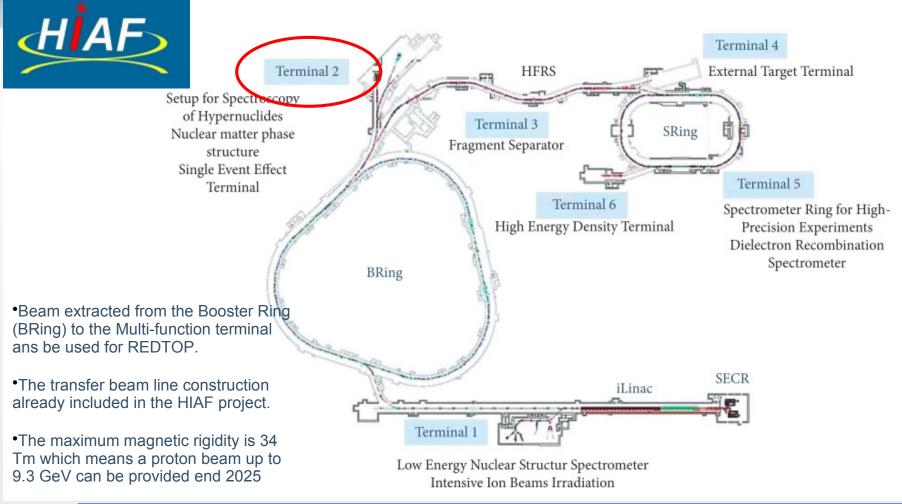

- p-bar target area
- 2e12 p/spill (time structure flexible) at SIS100
- Parallel operation possible due to p-LINAC
- Shielding and cave need to be evaluated
- Actual timeline beyond 2028

FAIR GmbH | GSI GmbH

Beam intensity: 1.8 GeV protons with 1e11/s

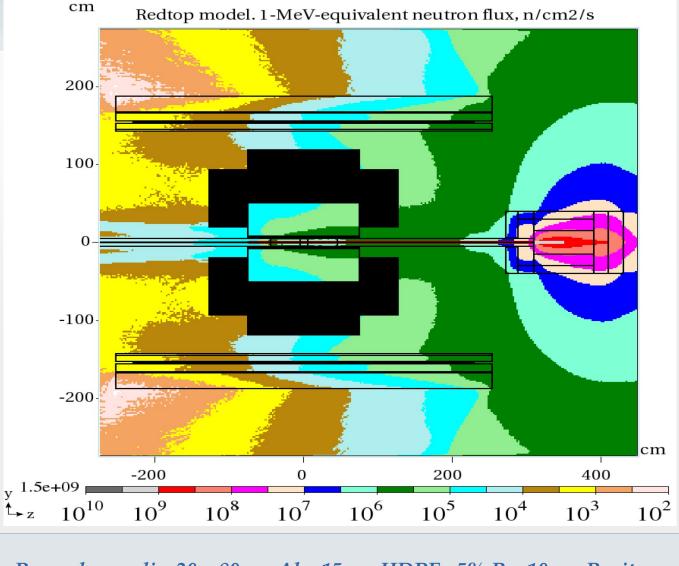
Daniel Severin

Beam Options at GSI (far future)



FAIR GmbH | GSI GmbH

Beam intensity: 1.8 GeV protons with 1e11/s


Daniel Severin

Beam Options at HIAF (near future)

Beam intensity: 0.5 ~1.0x10¹³ ppp (1~5*1x10¹³ pps) in Terminal 2 . 10⁽¹⁸⁻¹⁹⁾ POT /yr Energy from 2.0 to 9 GeV around 2028 – 2030 Plans are to combine REDTOP with an experiment on hypernuclei

MARS15 Shielding Assesment

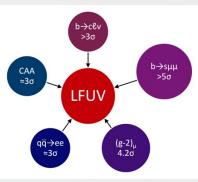
Beam dump: dia-30 x 80 cm Al + 15 *cm HDPE* +5% *B* + 10 *cm Barite*

Detector Requirements: BSM physics driven

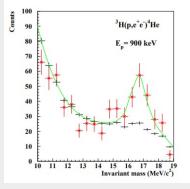
LFU: Tagged lepton production from flavor-conserving decays

• excellent $e/\pi/\mu$ separation

QCD axion


Calorimetric sensitivity to M(γγ)~30MeV

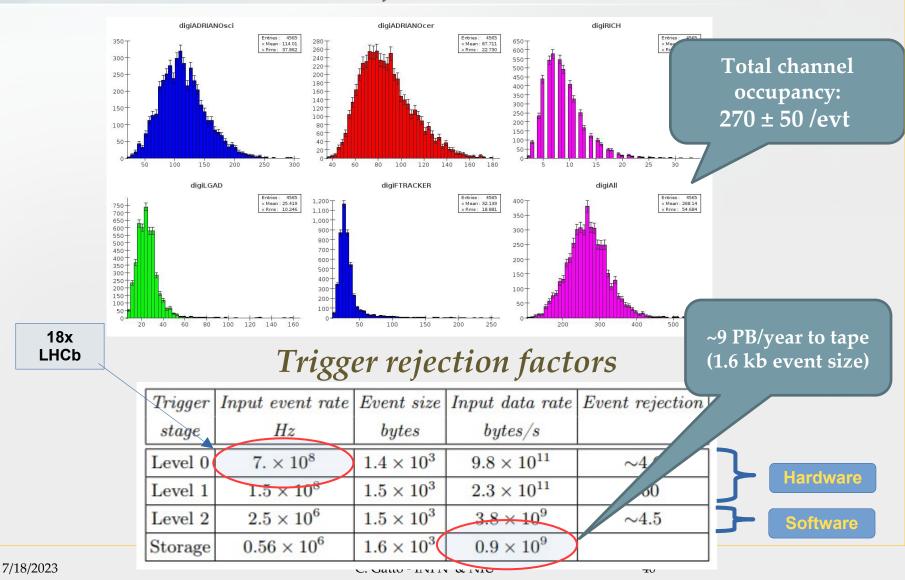
17 *MeV* e⁺e⁻ state (Atomki experiment)

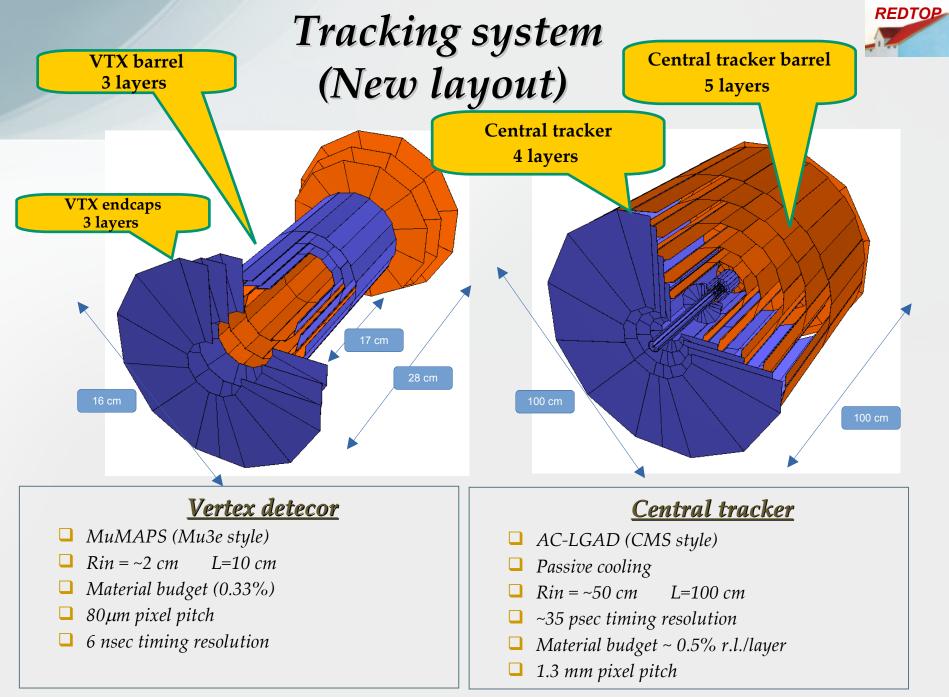

- Tracker sensitivity to M(e⁺e⁻)~ 20 MeV
- Electron ID at very low energy

CP violation with muons

• Muon polarimeter or high-granularity calorimeter

Mounting Evidence for the Violation of Lepton Flavor Universality https://arxiv.org/pdf/ 2111.12739.pdf (A. Crivellin, M. Hoferichter)

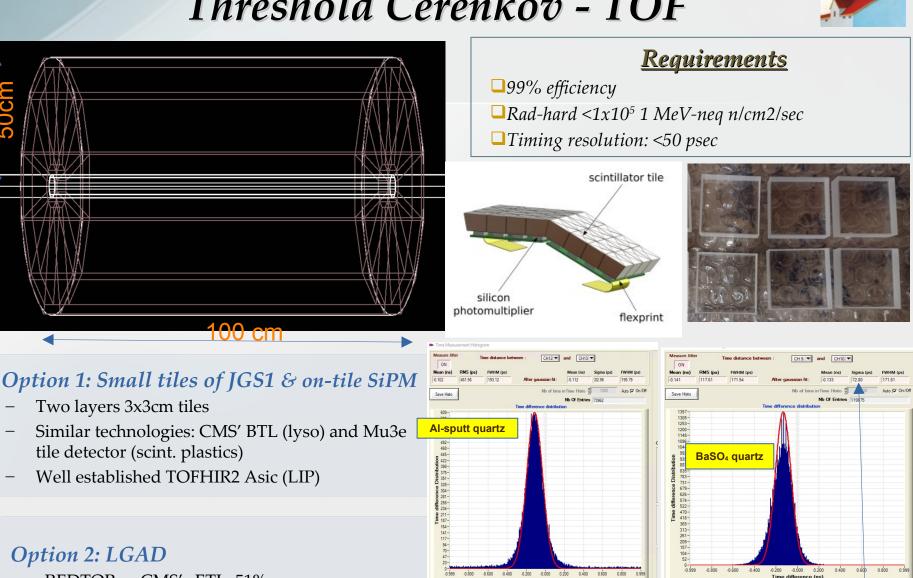



REDTOP Trigger Requirement

REDTOP

Untagged $10^{14} \eta/\eta'$ mesons

Hits from subdetectors



7/18/2023

C. Gatto - INFN & NIU

41 Gatto - INFN & NIU

Threshold Cerenkov - TOF

- REDTOP vs CMS's ETL: 51% area
- Extra cost justified by position measurement, but loose energy measurement

Time difference (ns)

XMax \$ 1.000

XMin 2-1.000

~50 psec/cell already achieved by T1604 Collaboration

X Axis Scale Auto

Time resolution: $73/\sqrt{2}$

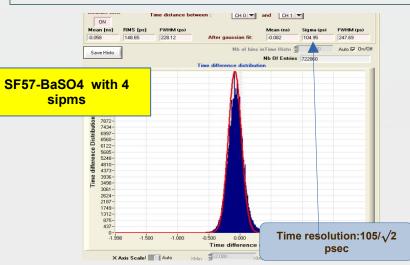
psec

REDTOP

7/18/2023

C. Gatto - INFN & NIL

CALORIMETERS

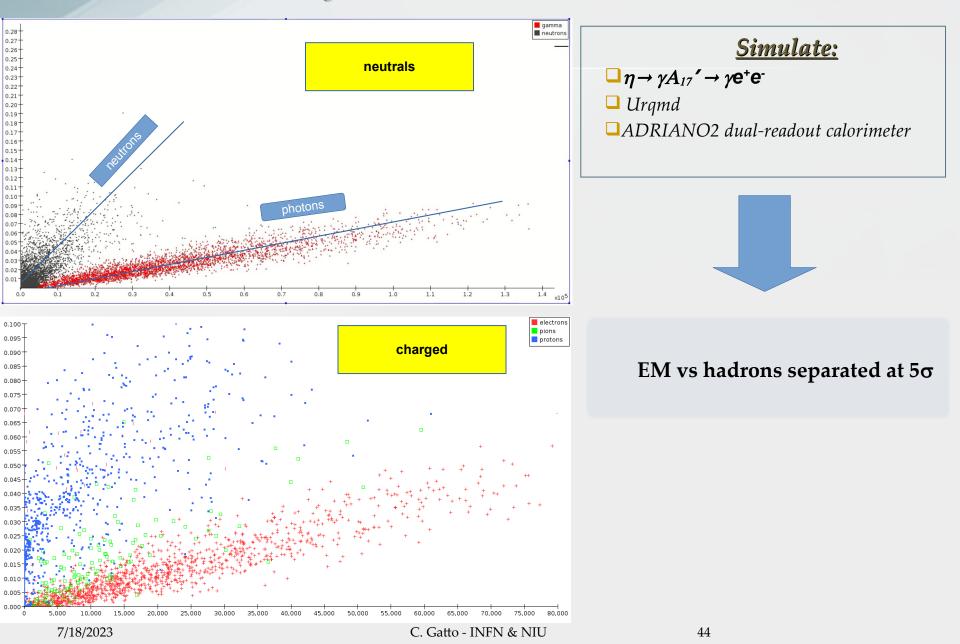


EM: dual-readout ADRIANO2

- Inner section: Pb-glass and scint. Tiles interleaved
- Barrel 12 layers (17 cm) 8 X0 / 0.6 λ_{I}
- Endcap 20 layers (28 cm) 13 X0 / 1.1 λ_{I}
- 195,00 tile-pairs
- Same plastic tiles as CMS' HGCAL
- FEE from Weeroc+Omega (costing being discussed) or TOFPET2

<u>Requirements</u>

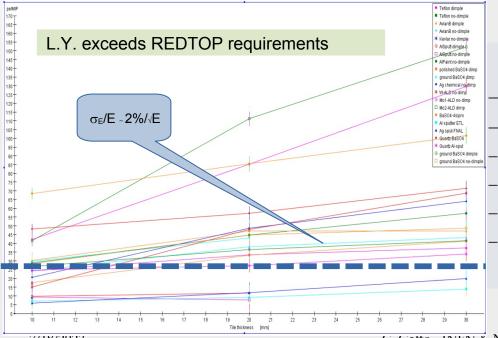
- $\Box \sigma_{E}/E \sim 2-3\%/\sqrt{E}$
- □~80 psec/cell timing resolution for MIPs.
- □No active cooling
- \square Rad-hard ~5x10⁴ 1 MeV-neq n/cm2/sec



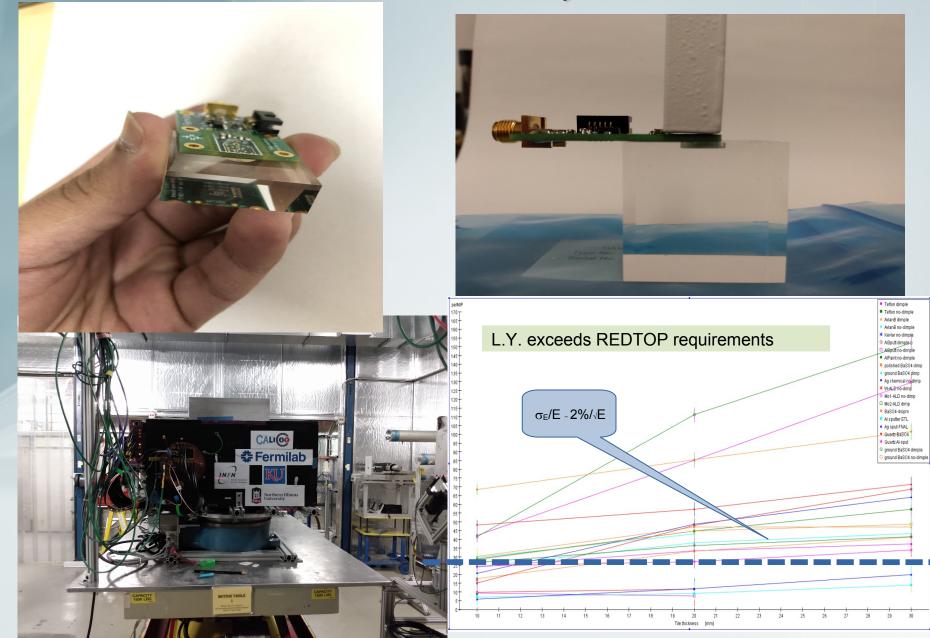
HAD: triple-readout ADRIANO3

- Outer section: Pb-glass + scint. + thin RPC + Fe
- Barrel: 20 layers (53) 17 X0 / 2.2 λ_{I}
- Endcap: 25 layers (67)– 22 X0 / 2.9 λ_{I}
- Longer λ_I for better hadron shower containement
- 365,00 tile-pairs
- Heatsink: pyrolitic foil

Why dual-readout: PID



ADRIANO2 vs ADRIANO3



HAD: triple-readout ADRIANO3

- Outer section: Pb-glass + scint. + thin RPC + Fe
- Barrel: 20 layers (53) 17 X0 / 2.2 λ_{I}
- Endcap: 25 layers (67)– 22 X0 / 2.9 λ_{I}
- Longer λ_I for better hadron shower containement
- 365,00 tile-pairs
- Heatsink: pyrolitic foil

R&D on ADRIANO2 (from T1604)

Slide from Calor2022

Subdetector Technologies

	Baseline (White paper)	Options
Target	Li foils: 10x 0.78mm	LH ₂ 11 cm
VTX	LHCb fiber tracker. REDTOP: 0.24m ² vs LHCb: 360m ²	CMOS (ITS3) or hybrid (fiber+1 layer CMOS)
Central tracker	LGAD 100µm/layer eq., no active cooling (30 psec/layer). REDTOP: 14m ² vs CMS: 16m ²	LGAD 120µm/layer eq., no active cooling (42 psec/layer)
TOF	1 layer 30x30x10 mm ³ JGS1 + Petiroc (50 psec/layer). Area: 3.7 m ²	2 layers, 30x30x10 or 20x20x10 mm ³ JGS1 + Liroc+Tsinghua TDC/PicoTDC (<30 psec/layer). Area: 9.4 m ²
Calorimeter	ADRIANO2: 53 layers 30x30x14 mm ³ SF57/cast scint (80 psec/cell) 800,000 tile pairs	ADRIANO2: 30 layers 30x30x14 mm ³ ZF2/ scint + 23 layers JGS1/Cu/scint (80 psec/cell) 400,000 tile pairs
μ- polarimeter	Not implemented	TBD