Analysis of particle p_T-spectra in model-generated HICs using Tsallis statistics

E. Zabrodin,

in collaboration with P. Panasiuk and L. Bravina

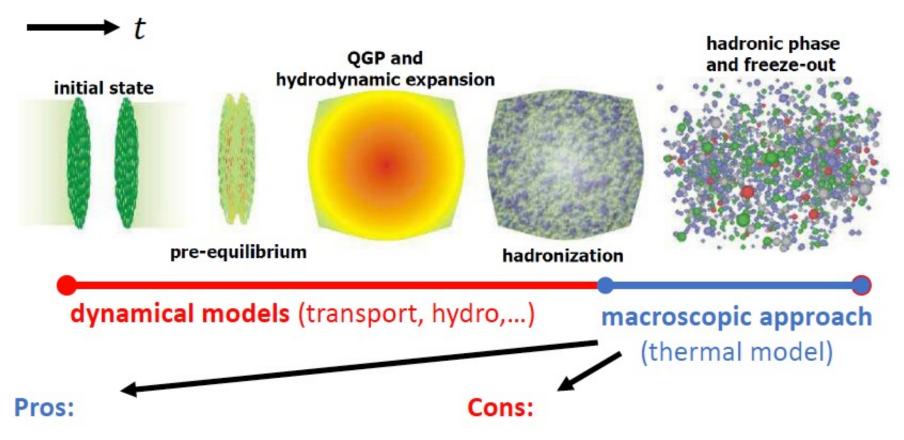
XII-th International Conference on New Frontiers in Physics ICNFP-2023 Kolymbari, Crete, Greece, 10 -- 23.07.2023

Motivation

Search for equilibrium

teffen A. Bass

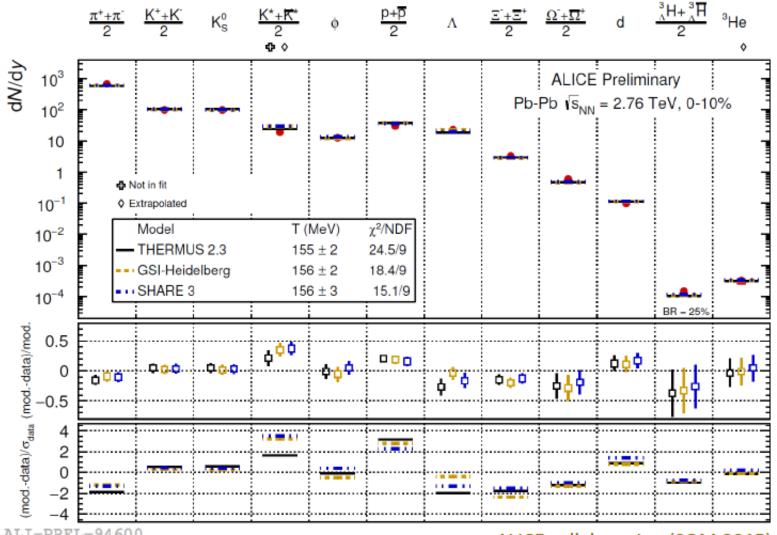
Relativistic heavy-ion collisions: Thermal model



- Simplest model with very few free parameters (*T*, μ_B,...)
- Connection to QCD phase diagram
- Easier to test new ideas

- No dynamics
- Describes only yields
- Thermal parameters fitted to data at each energy

Thermal fits at LHC



ALICE collaboration (SQM 2015)

ALI-PREL-94600

BOLTZMANN-GIBBS VS TSALLIS STATISTICS

Boltzmann-Gibbs

$$n_{i} = \frac{g_{i}}{(2\pi)^{3}} \int f(p, m_{i}) d^{3}p , \qquad f(p, m_{i}) = \left[\exp\left(\frac{\epsilon_{i} - \mu_{i}}{T}\right) \pm 1 \right]^{-1}$$

$$\varepsilon_{i} = \frac{g_{i}}{(2\pi)^{3}} \int \sqrt{p^{2} + m_{i}^{2}} f(p, m_{i}) d^{3}p$$

$$P_{i} = \frac{g_{i}}{(2\pi)^{3}} \int \frac{p^{2}}{3(p^{2} + m_{i}^{2})^{1/2}} f(p, m_{i}) d^{3}p$$

$$M = gV \int \frac{d^{3}p}{(2\pi)^{3}} \left[1 + (q-1)\frac{E-\mu}{T} \right]^{-\frac{q}{q-1}},$$

$$\epsilon = g \int \frac{d^{3}p}{(2\pi)^{3}} E \left[1 + (q-1)\frac{E-\mu}{T} \right]^{-\frac{q}{q-1}},$$

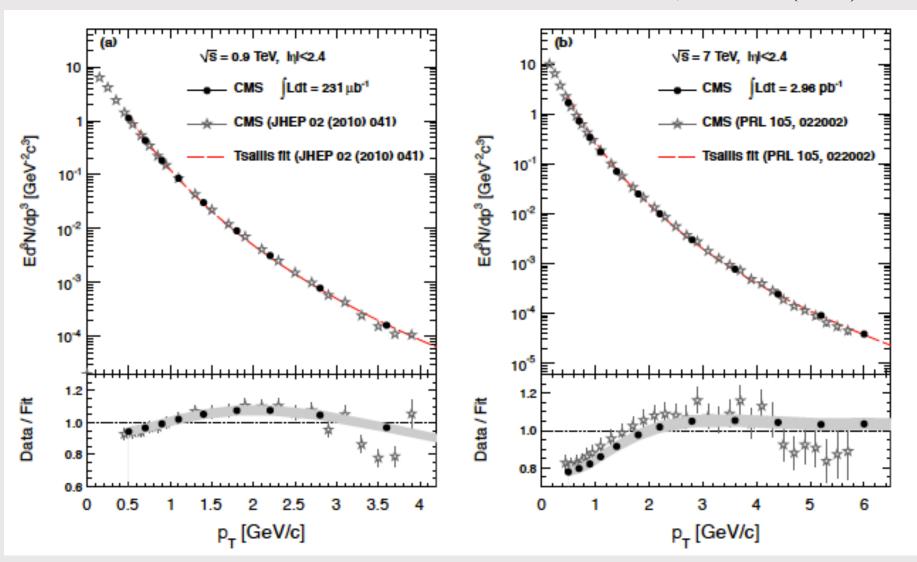
$$P = g \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{2}}{2E} \left[1 + (q-1)\frac{E-\mu}{T} \right]^{-\frac{q}{q-1}},$$

$$I = I \text{ then BG}$$

$$I = I \text{ t$$

EXAMPLE: PROTON-PROTON COLLISIONS

CMS Collab., JHEP 08 (2011) 086

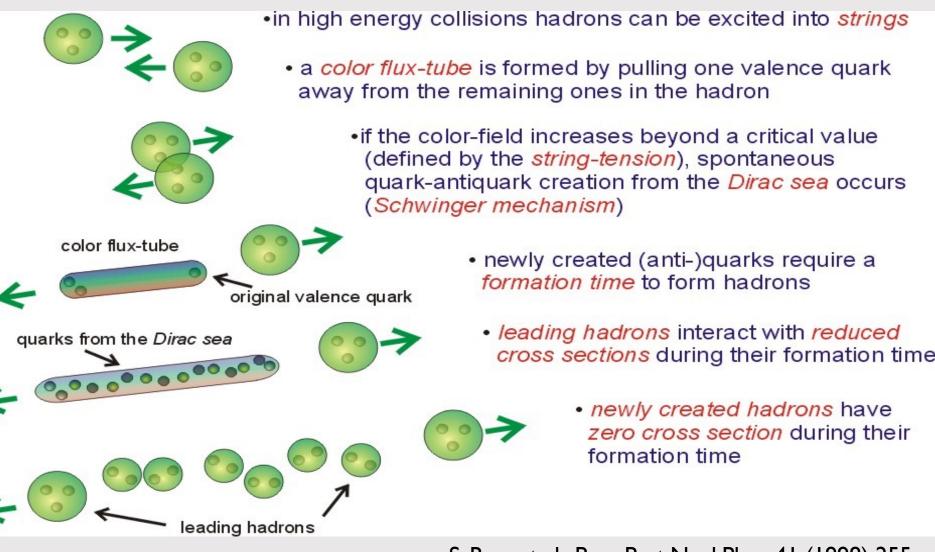


Models: UrQMD, SMASH

HICs at intermediate energies

teffen A. Bass

INITIAL PARTICLE PRODUCTION IN URQMD



S. Bass et al., Prog.Part.Nucl.Phys. 41 (1998) 255 M. Bleicher, E.Z., et al., J.Phys.G 25 (1999) 1859

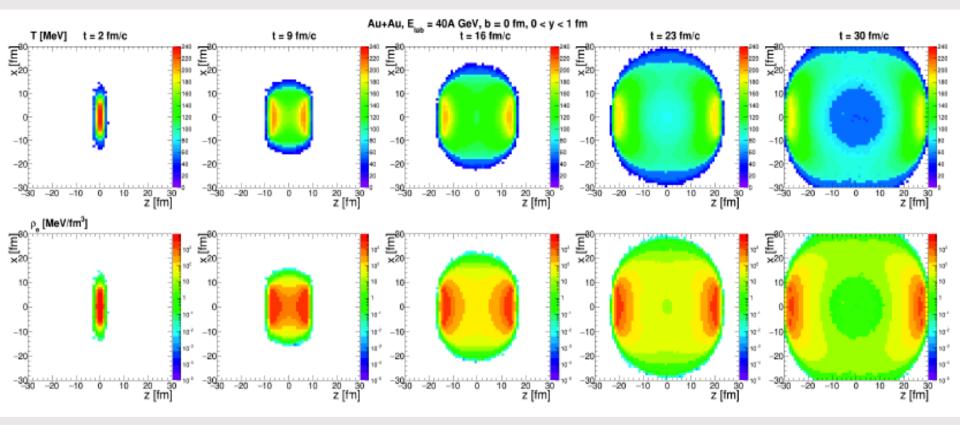
SMASH: general properties J. Weil et al., Phys. Rev. C94 (2016) no.5, 054905

Monte-Carlo solver of relativistic Boltzmann equations

BUU type approach, testparticles ansatz: $N \rightarrow N \cdot N_{test}, \sigma \rightarrow \sigma / N_{test}$

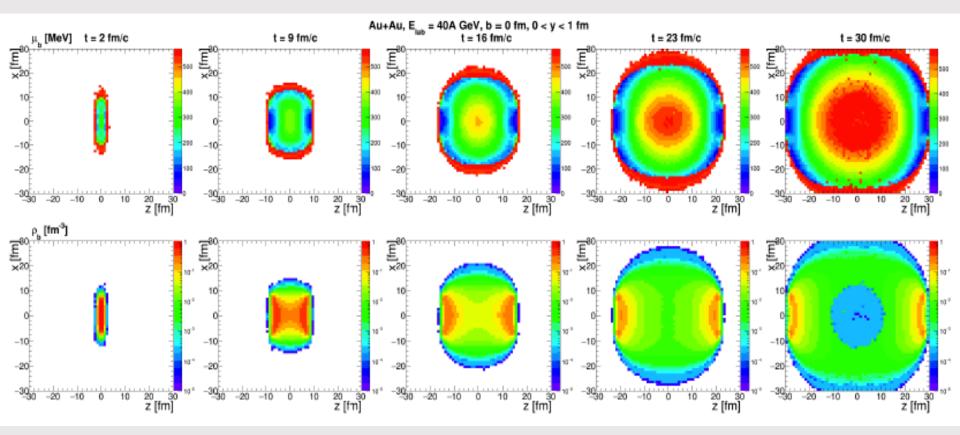
- Degrees of freedom
 - most of established hadrons from PDG up to mass 2.5 GeV
 - strings: do not propagate, only form and decay to hadrons
 - leptons and photons production, decoupled from hadronic evolution
- Propagate from action to action (timesteps only for potentials) action = collision, decay, wall crossing
- Geometrical collision criterion: $d_{ij} \leq \sqrt{\sigma/\pi}$
- Interactions: $2 \leftrightarrow 2$ and $2 \rightarrow 1$ collisions, decays, potentials, string formation (soft SMASH, hard Pythia 8) and fragmentation via Pythia 8
- C++ code, git version control, public on github

EVOLUTION OF TEMPERATURE T AND ENERGY DENSITY ε



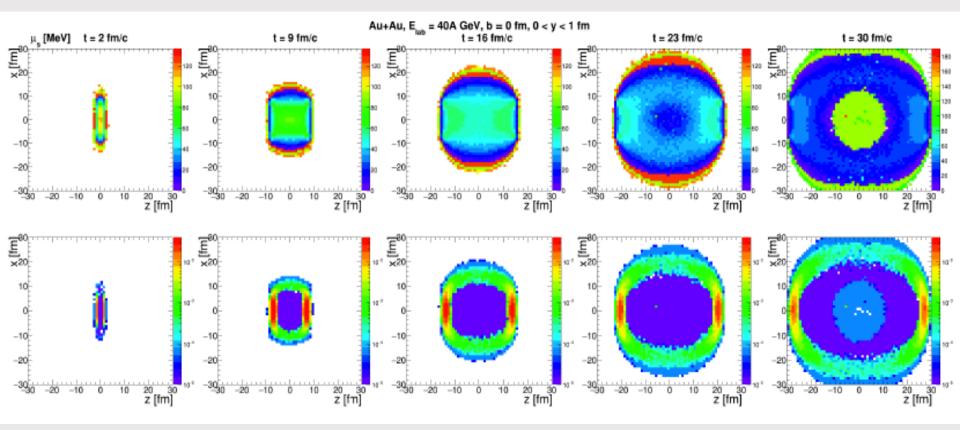
There is no global equilibrium in the whole volume of the fireball. We opted for the central cell with volume $V = 5 \times 5 \times 5 = 125 \ fm^3$

EVOLUTION OF BARYON CHEMICAL POTENTIAL μ_B AND NET-BARYON DENSITY ρ_B



Net-baryon density is non-uniformly distributed within the whole volume, therefore baryon chemical potential is also different in different areas

EVOLUTION OF STRANGENESS CHEMICAL POTENTIAL μ_S AND NET-STRANGENESS DENSITY ρ_S



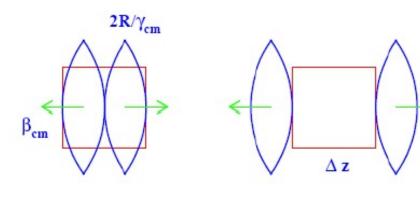
Net-strangeness density is also non-uniformly distributed within the whole volume. Net-strangeness chemical potential is different in different areas

Central cell and

Box with periodic boundary conditions

teffen A. Bass

Equilibration in the Central Cell



 $t^{cross} = 2R/(\gamma_{cm} \beta_{cm})$

$$t^{eq} \ge t^{cross} + \Delta z/(2\beta_{cm})$$

L.Bravina et al., PLB 434 (1998) 379; JPG 25 (1999) 351 Kinetic equilibrium: Isotropy of velocity distributions Isotropy of pressure

Thermal equilibrium: Energy spectra of particles are

described by Boltzmann distribution

$$\frac{dN_i}{4\pi pEdE} = \frac{Vg_i}{(2\pi\hbar)^3} \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

Chemical equlibrium:

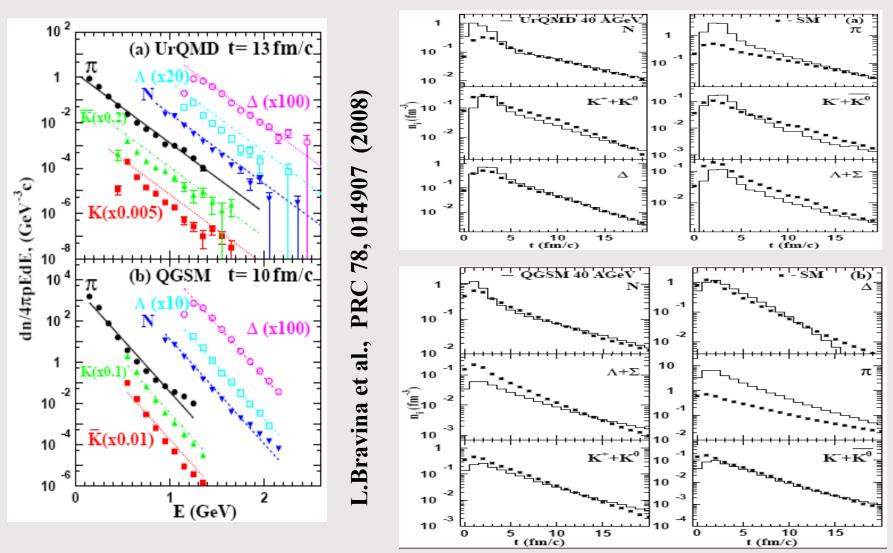
Particle yields are reproduced by SM with the same values of $(T, \ \mu_B, \ \mu_S)$:

$$N_i = \frac{Vg_i}{2\pi^2\hbar^3} \int_0^\infty p^2 dp \exp\left(\frac{\mu_i}{T}\right) \exp\left(-\frac{E_i}{T}\right)$$

THERMAL AND CHEMICAL EQUILIBRIUM

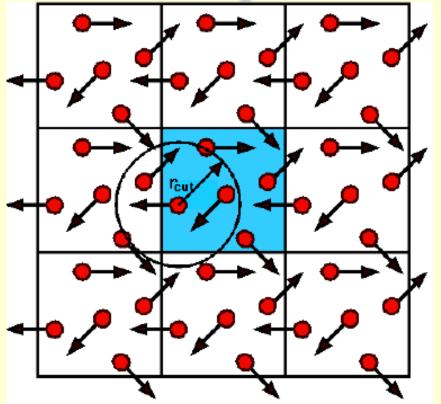
Boltzmann fit to the energy spectra

Particle yields



Thermal and chemical equilibrium seems to be reached

Box with periodic boundary conditions



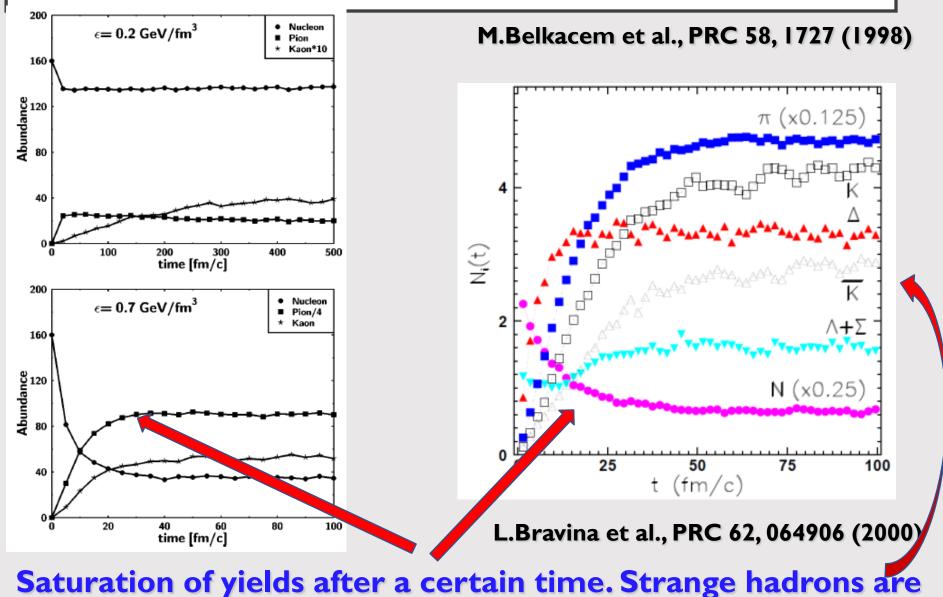
Initialization: (i) nucleons are uniformly distributed in a configuration space; (ii) Their momenta are uniformly distributed in a sphere with random radius and then rescaled to the desired energy density.

M.Belkacem et al., PRC 58, 1727 (1998)

Model employed: UrQMD 55 different baryon species (N, Δ , hyperons and their resonances with $m \leq 2.25 \text{ GeV/c}^2$) 32 different meson species (including resonances with $m \le 2 \text{ GeV/c}^2$) and their respective antistates. For higher mass excitations a string mechanism is invoked.

Test for equilibrium: particle yields and energy spectra

BOX: PARTICLE ABUNDANCES



saturated longer compared to other hadrons

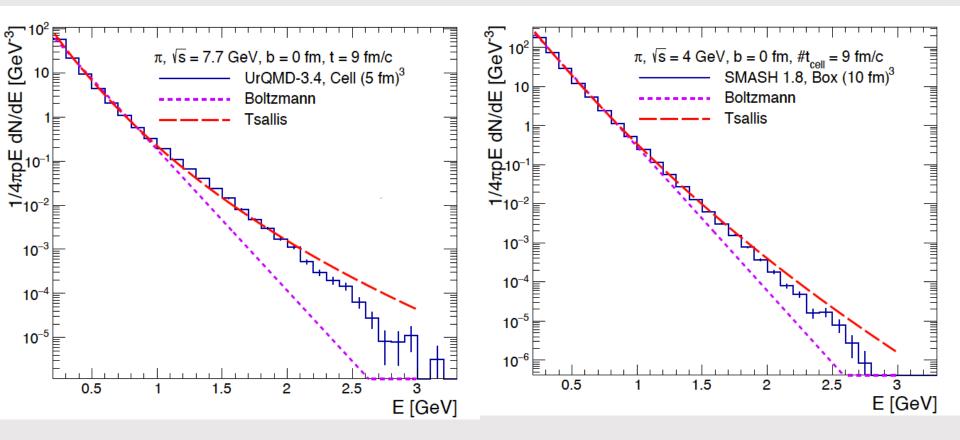
Results for central

Au+Au collisions

teffen A. Bass

TSALLIS FIT VS BOLTZMANN FIT

Pions, Au+Au central collisions at $\sqrt{s} = 4$ GeV and 7.7 GeV CELL (UrQMD) BOX (SMASH)



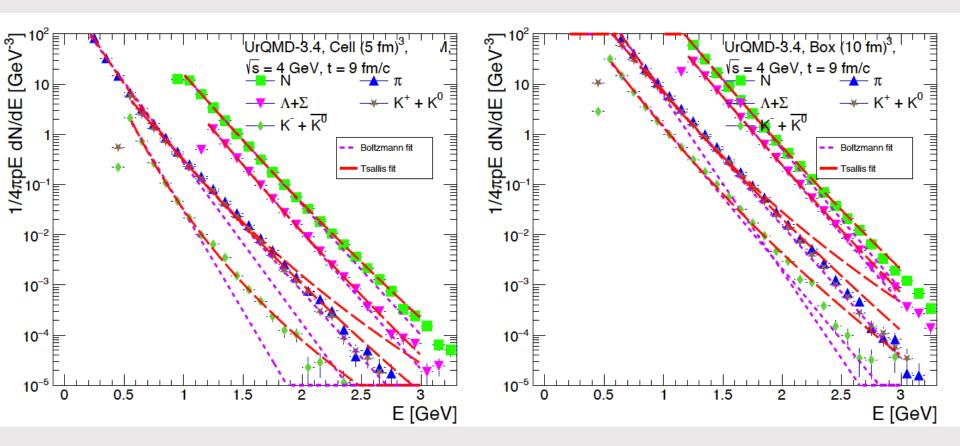
Deviations from BG distribution for cell and box spectra in both models

TSALLIS FIT VS BOLTZMANN FIT

Au+Au central collisions at $\sqrt{s} = 4$ GeV (UrQMD)

CELL

BOX



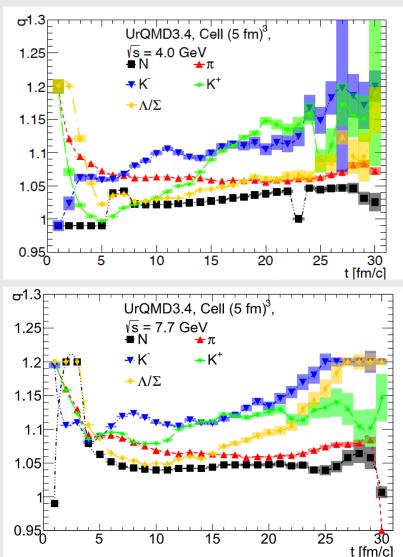
Tsallis distribution better matches the particle spectra both for the matter in the cell and for the infinite nuclear matter

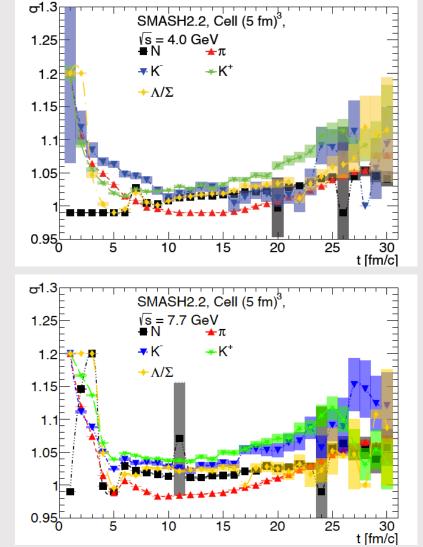
TIME EVOLUTION OF Q IN THE CELL

Au+Au central collisions at $\sqrt{s} = 4$ GeV and 7.7 GeV

UrQMD 3.4

SMASH 2.2





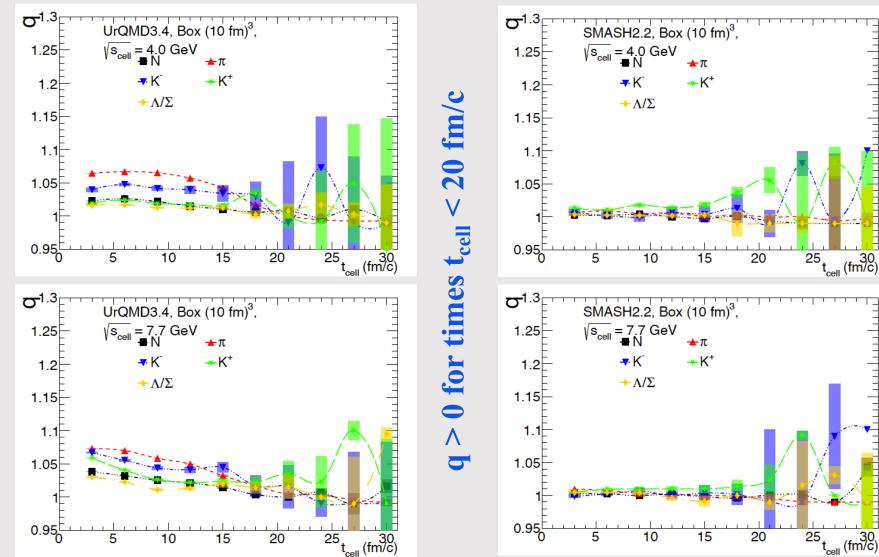
1.07 V 0.09 varies slight

TIME EVOLUTION OF $\boldsymbol{\varrho}$ IN THE BOX

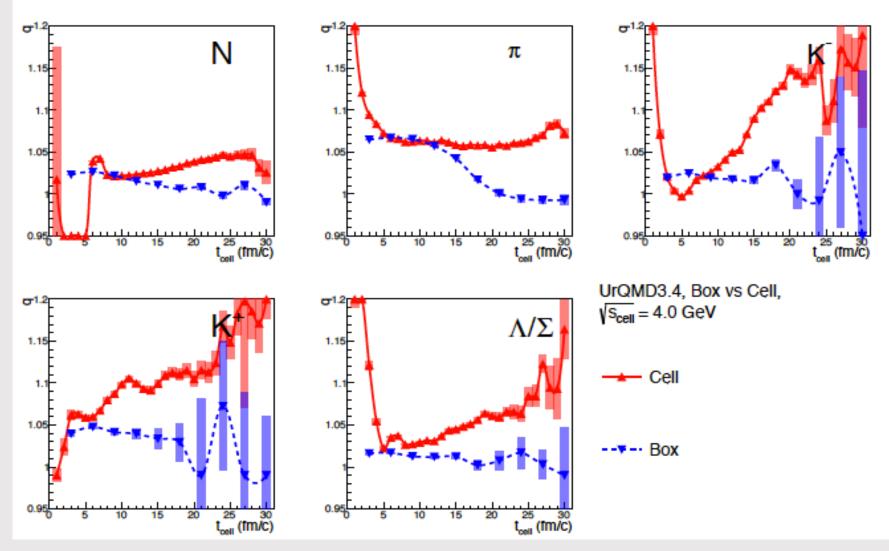
Au+Au central collisions at $\sqrt{s} = 4$ GeV and 7.7 GeV

UrQMD 3.4

SMASH 2.2

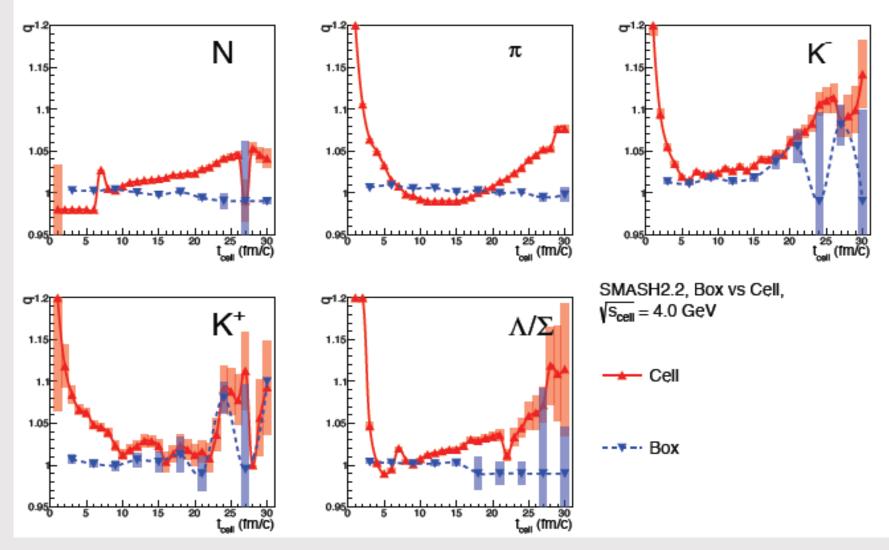


Au+Au central collisions at $\sqrt{s} = 4$ GeV (UrQMD)



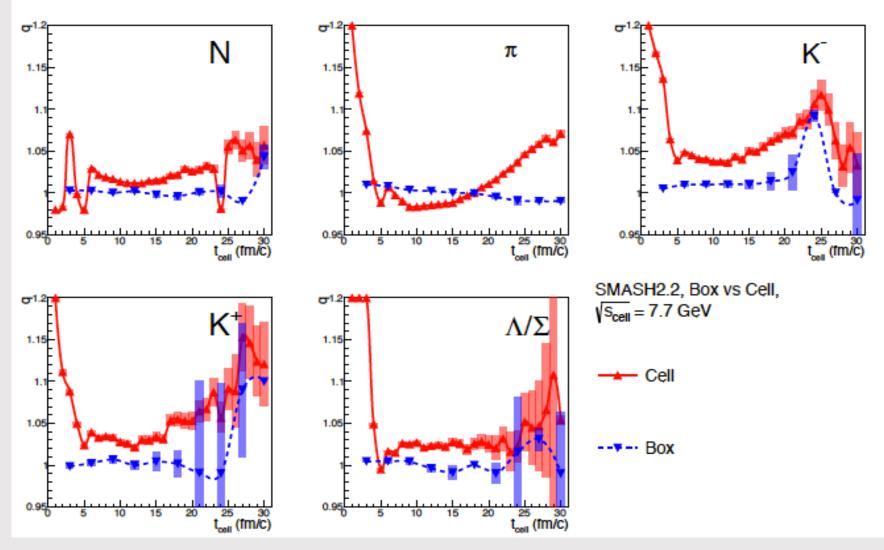
The matter in the cell is close to (albeit not in) equilibrium

Au+Au central collisions at $\sqrt{s} = 4$ GeV (SMASH)



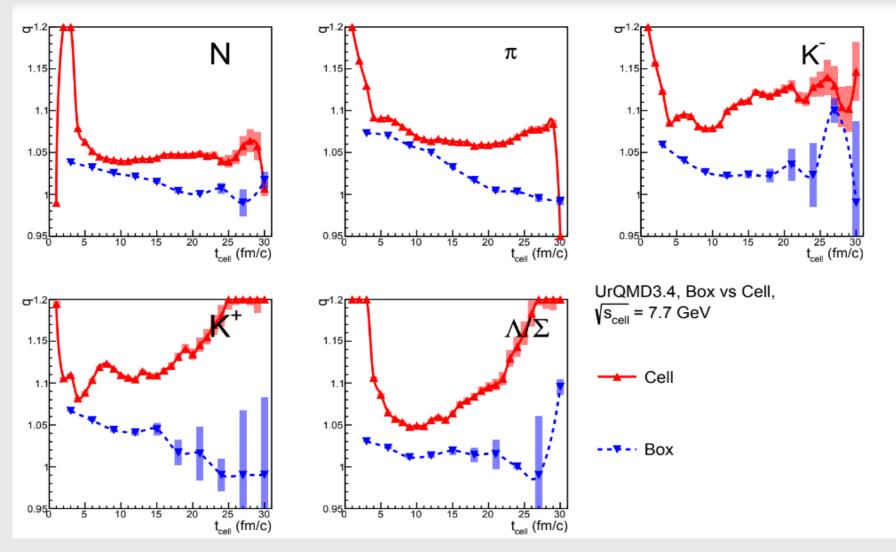
Fair agreement between the cell and the box results

Au+Au central collisions at $\sqrt{s} = 7.7$ GeV (SMASH)



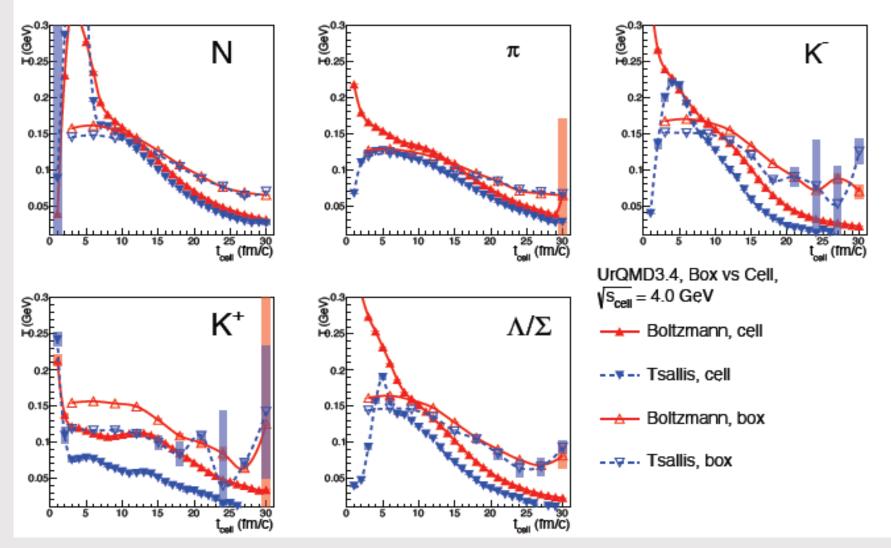
... but for higher energy the agreement is not so good

Au+Au central collisions at $\sqrt{s} = 7.7$ GeV (UrQMD)



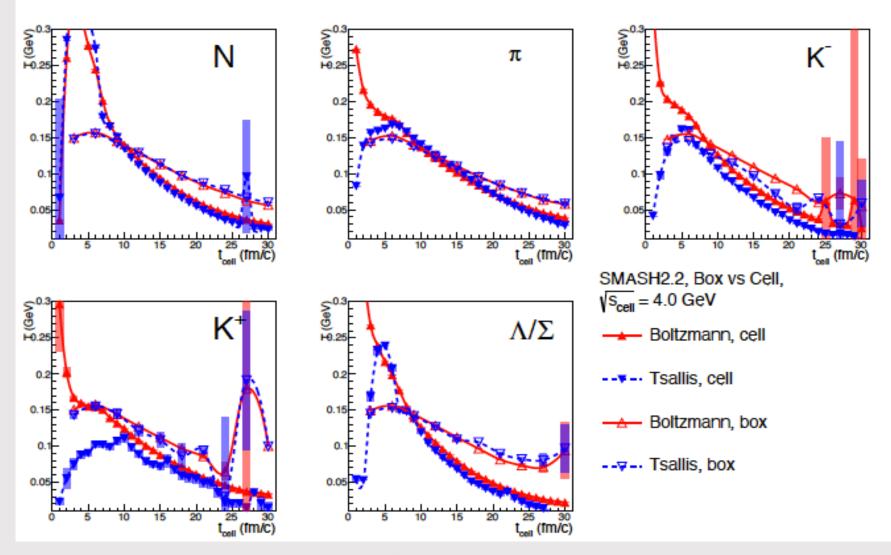
Cell results are not close to the box ones anymore

Au+Au central collisions at $\sqrt{s} = 4$ GeV (UrQMD)



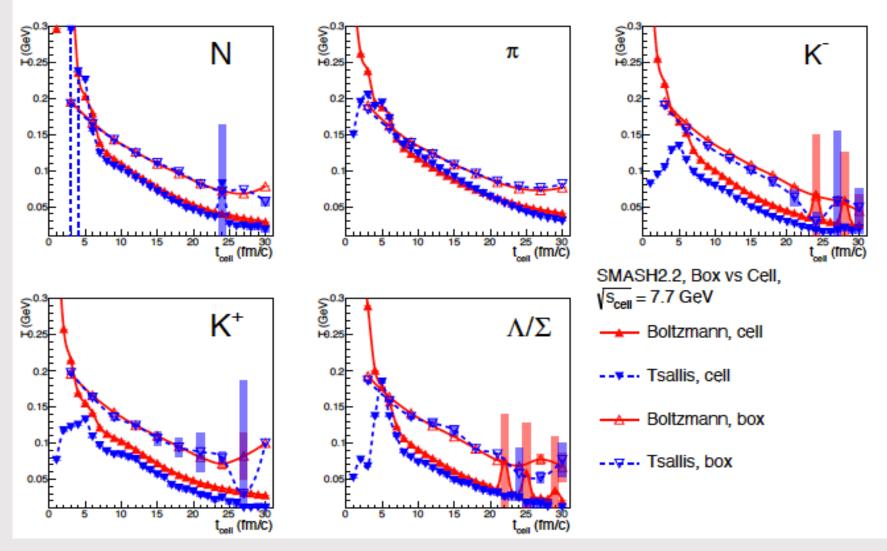
The Tsallis fit provides lower temperatures than the Boltzmann fit

Au+Au central collisions at $\sqrt{s} = 4$ GeV (SMASH)



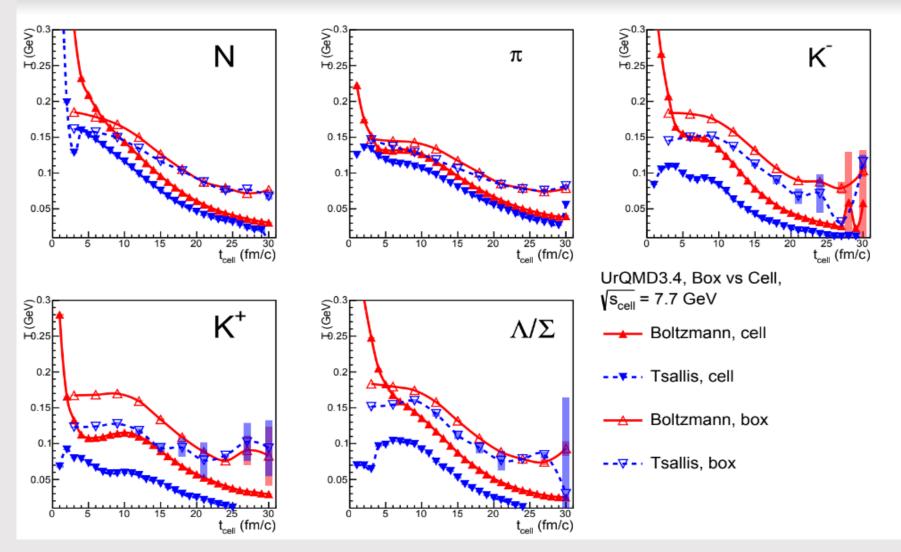
Temperatures of both fits are close to each other

Au+Au central collisions at $\sqrt{s} = 7.7$ GeV (SMASH)



T_{Tsallis} is a bit lower compered to **T**_{Boltzmann}

Au+Au central collisions at $\sqrt{s} = 7.7 \text{ GeV}$ (UrQMD)



The Tsallis fit provides lower temperatures than the Boltzmann fit

Our study indicates that

- Tsallis distribution better matches the particle p_T -spectra both for the matter in the cell and the infinite nuclear matter
- UrQMD: parameter q varies from 1.02 to 1.15 for the cell and from 1.01 to 1.07 for the box calculations
- SMASH: parameter q varies from 0.99 to 1.07 for the cell and is about 1 ± 0.01 for the box calculations
- q^{cell} is close to q^{box} at lower energies for both models
- at higher energies the agreement worsens
- the Tsallis fit provides (a bit) lower temperatures than the Boltzmann fit

Thank you for

your attention !

teffen A. Bass

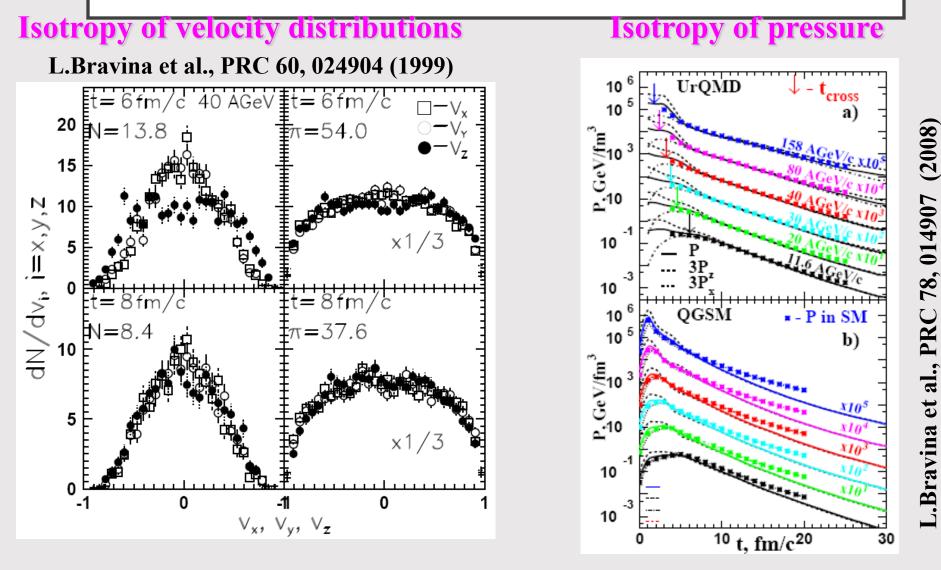
Back-up

Slides

teffen A. Bass

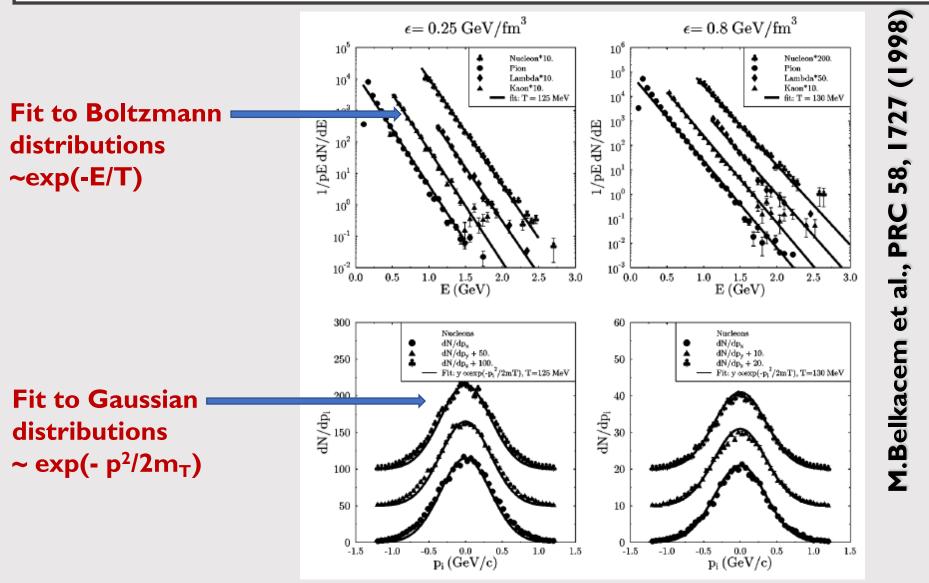
Statistical model of ideal hadron gas input values output values $\boldsymbol{\varepsilon}^{\mathrm{mic}} = \frac{1}{V} \sum_{i} E_{i}^{\mathrm{SM}}(T, \boldsymbol{\mu}_{\mathrm{B}}, \boldsymbol{\mu}_{\mathrm{S}}),$ $\boldsymbol{\rho}_{\mathrm{B}}^{\mathrm{mic}} = \frac{1}{V} \sum_{i} B_{i} \cdot N_{i}^{\mathrm{SM}}(\boldsymbol{T}, \boldsymbol{\mu}_{\mathrm{B}}, \boldsymbol{\mu}_{\mathrm{S}}),$ $\boldsymbol{\rho}_{\mathbf{S}}^{\mathrm{mic}} = \frac{1}{V} \sum_{i} S_{i} \cdot N_{i}^{\mathrm{SM}}(\boldsymbol{T}, \boldsymbol{\mu}_{\mathrm{B}}, \boldsymbol{\mu}_{\mathrm{S}}).$ **Multiplicity** $N_i^{\text{SM}} = \frac{Vg_i}{2\pi^2\hbar^3} \int_0^\infty p^2 f(p, m_i) dp,$ **Energy** \rightarrow $E_i^{SM} = \frac{Vg_i}{2\pi^2\hbar^3} \int_0^\infty p^2 \sqrt{p^2 + m_i^2} f(p, m_i) dp$ $P^{\text{SM}} = \sum_{i} \frac{g_i}{2\pi^2 \hbar^3} \int_0^\infty p^2 \frac{p^2}{3(p^2 + m_i^2)^{1/2}} f(p, m_i) dp$ Pressure $s^{\text{SM}} = -\sum_{i} \frac{g_i}{2\pi^2 \hbar^3} \int_0^\infty f(p, m_i) \left[\ln f(p, m_i) - 1\right] p^2 dp$ Entropy density

KINETIC EQUILIBRIUM



Velocity distributions and pressure become isotropic for all energies

BOX: ENERGY SPECTRA AND MOMENTUM DISTRIBUTIONS



Nearly the same temperature and complete isotropy of