
Introduction
to Machine Learning

Tommaso Dorigo, INFN-Padova

Kolympari, July 19, 2023



Suggested reading
These lectures are based on a number of different sources, as well as on 
some personal alchemy
I tried to provide references but sometimes I failed [apologies...]

A formal treatment of most of the covered material, and more in-depth than 
what I can go here, is offered in a couple of excellent textbooks:

Hastie, Tibshirani, Friedman:
The elements of statistical learning
→ AVAILABLE ONLINE FOR FREE!

Narsky, Porter: Statistical Analysis 
techniques in Particle Physics, 
Wiley

2



Contents - 1

Lecture 1: An introduction to Machine Learning
– Introduction

• Map of ML problems

• Supervised and unsupervised learning

– Density estimation
• kNN

• Divergence measures

– Resampling techniques

– The data

– The model

3



Contents - 2

Lecture 2: Classification and decision trees

– Classification

– Loss minimization

– Decision trees

• random forests

• boosting techniques

4



Contents - 3

Lecture 3: Neural networks

– Neural networks

– Playing with NNs

– Practical tips

– Conclusions

5



Lecture 1 - INTRODUCTION

6



Classes of Statistical Learning algorithms

Supervised:
if we know the probability density of S and B, or if at least we can estimate it
→ E.g. we use "labeled" training events ("Signal" or "Background")
to estimate p(x|S), p(x|B) or their ratio

Semi-supervised:
it has been shown that even knowing the labels for part of the data is
sufficient to construct a classifier

Un-supervised:
if we lack an a-priori notion of the structure of the data, and we let an 
algorithm discover it without e.g. labeling classes → cluster analysis, 
anomaly detection, unconditional density estimation. 

We may also single out:
Reinforcement learning:

the algorithm learns from the success 
or failure of its own actions
→ E.g. a robot reaches its goal or fails

7

https://www.youtube.com/watch?v=hx_bgoTF7bs


A map to clarify the players role

Machine 
Learning

Unsupervised learning
Develop model to group and 
interpret data without labels

Supervised learning
Develop predictive model 

based on labelled data

Classification
The output is nominal, 

categorical,
unordered / ordered

Regression
The output is 
continuous

Clustering
Learn ways    
to partition  

the data

Semi-supervised 
Learning

Data only partly 
labeled

anomaly 
detection

find outliers

Density 
Estimation

Find p(x)
8



A more complete list of ML tasks /1

Classification and Regression are important tasks belonging to the 
"supervised" realm. But there are many other tasks:

• Density estimation: this is usually an ingredient of classification, but can 
be a task of its own.

• Clustering: find structures in the data, organize by similarity. Often can 
be a useful input to other tasks

• Anomaly detection (e.g. fraud detection, from the modeling of 
purchasing habits; or new physics searches!)

• Classification with missing inputs: if taken with brute force, this differs
from simple classification because one is looking for a set of functions, 
each mapping into the categorical output a vector x with a different set 
of missing components (but: better to use a probabilistic model to 
handle it)

9



A more complete list of ML tasks /2

• Structured output:
- Transcription: e.g. transform unstructured representation of data into discrete 

textual form; e.g. images of handwriting or numbers (Google Street view does 
it with DNN for street addresses), or speech recognition from audio stream

- Machine translation
- parsing sentences into grammatical structures
- image segmentation, e.g. aerial pictures → road positions or land usage
- image captioning

• Synthesis, sampling: e.g. speech synthesis (structured output with no 
single correct output for each input); GANs can be used for e.g. 
generating artificial data

• Missing values inputation: this can be a very complex task – Netflix ran a 
challenge on it to understand customer preferences

• Denoising: obtain the clean example from a corrupt one x*, get p(x|x*)
10



The supervised learning problem

• Starting point:
– A vector of n predictor measurements X (a.k.a. inputs, regressors, 

covariates, features, independent variables).
– One has training data {(x,y)}: events (or examples, instances, 

observations...) 
– The outcome measurement Y (a.k.a. dependent variable, or 

response, or target)
• In classification problems Y can take a discrete, unordered set of values

(signal/background, index, type of class)
• In regression, Y has a continuous value

• Objective:
– Using the data at hand, we want to predict y* given x*, when

(x*,y*) does not necessarily belong to the training set.
– The prediction should be accurate: |f(x*)-y*| must be small

according to some useful metric (se later)

11



Example: the Netflix challenge

12



The unsupervised learning problem

• Starting point:
– A vector of n predictor measurements X (a.k.a. inputs, regressors, 

covariates, features, independent variables).
– One has training data {x}: events (or examples, instances, observations...) 
– There is no outcome variable Y 

• Objective is much fuzzier:
– Using the data at hand, find groups of events that behave similarly, find

features that behave similarly, find linear combinations of features 
exhibiting largest variation

• Hard to find a metric to see how well you are doing
• Result can be useful as a pre-processing step for supervised learning

13



Ideal predictions, a' la Bayes

For a regression problem, the best prediction we can make for Y based on the input 
X=x is given by the function

f(x) = Ave (Y|X=x)

This is the conditional expectation: you just derive the Y average for all examples 
having the relevant x.
• It is the best predictor if we want to minimize the average squared error,

Ave (Y-f(X))2.
• But it is NOT the best predictor if you use other metrics. E.g., if you wish to 

minimize Ave |Y-f(X)| you should rather pick... Who can guess it?
f(x) = Median (Y|X=x)

If we instead are after a qualitative output Y in {1...M} (a discrete one, as in multi-
class classification tasks) what we can do is to compute

P (Y=m|X=x) 

for each m: conditional probability of class m at position X=x; then we take as the 
class prediction

C(x) = Arg maxj {P(Y=j|X=x)}. 

The above is the majority vote classifier.

Problem solved? Let us try and see how to implement these ideas.
14



Implementation

To predict Y at X=x*, collect all pairs (x*,y) in your training data, then
• For regression, get 

f(x*) = Ave (y|X=x*)

• For classification, get 
c(x*) = Arg maxj {P(Y=j|X=x*)}

Alas, this would be good, but... 

We usually have sparse training data, obtained by forward simulation. Our 
simulator gives p(x|y) but the process is stochastic. That means we cannot 
invert the simulator, extracting p(y|x)!
In most cases we have NO observations with X=x*. 

Who you're gonna call ?
Density estimation methods!

15



DENSITY ESTIMATION

16



Density Estimation

Non-parametric: sample-based estimators. 
The most common is the histogram. NP density estimators 
have a number of attractive properties for experimental 
sciences:
• are easy to use for two things dear to HEP/astro-HEP: 

efficiency estimates (e.g. from Bernoulli trials) and for 
background subtraction

• lend themselves to be good inputs to unfolding 
methods

• are an excellent visualization tool, both in 1 and 2D

Given a sample of data X, one wishes to determine their prior PDF p(X).

One can solve this with parametric or non-parametric approaches.
Parametric: find a model within a class, which fits the observed density

→ an assumption is necessary as the starting point

S+B

B

S17



The empirical density estimate

With sparse data, the most obvious
estimate of the density from which
i.i.d. data {xi} are drawn is called
"empirical probability density
function" (EPDF), which can be 
obtained by placing a Dirac delta 
function at each observation xi:

መ𝑓 𝑥 =
1

𝑁


𝑖=1

𝑁

𝛿(𝑥 − 𝑥𝑖)

Of course, the EPDF is rarely useful in 
practice as a computation tool. 
Common way of visualizing 2D or 3D 
data (scatterplots) 18



Histograms

Histograms are a versatile, intuitive, ubiquitous way to get a quick density estimate 
from data points:

h(x) = Sumi=1...N I (x-xi;w)
where w is the width of the bin, and I is a uniform interval function (indicator
function),

I (x;w) = 1 for x in [-w/2,w/2], 
= 0 otherwise

The density estimate provided by h(x) is then
f(x) = h(x)/(Nw)

Yet histograms have drawbacks:
• they are discontinuous
• they lose information on the true location of each data points through the use of a 

"regularization", the bin width w
• not unique: there is a 2D infinity of histogram-based PDF estimates possible for 

each dataset, depending on binning and offset. 

w

I(x;w)

xi

x

19



Kernel density estimation
A useful generalization of the histogram is obtained by substituting the indicator function
with a suitable "kernel":

መ𝑓 𝑥 =
1

𝑁


𝑖=1

𝑁

𝑘(𝑥 − 𝑥𝑖; 𝑤)

The kernel function k(x,w) is normalized to unity. It is typically of the form

k 𝑥 − 𝑥𝑖; 𝑤 =
1

𝑤
𝐾(
𝑥 − 𝑥𝑖
𝑤

)

The advantage of using a kernel instead than a delta is evident: we obtain a continuous, 
smooth function. This comes, of course, at the cost of a modeling assumption.
A common kernel is the Gaussian distribution; the results however depend more on the 
smoothing parameter w than on the choice of the specific form of k.

The "kernelization" of the data can be operated in multiple dimensions, too. The kernels 
operating in each component are identical but may have different smoothing parameters:

መ𝑓 𝑥, 𝑦 =
1

𝑁𝑤𝑥𝑤𝑦


𝑖=1

𝑁

𝐾(
𝑥 − 𝑥𝑖
𝑤𝑥

)𝐾(
𝑦 − 𝑦𝑖
𝑤𝑦

)

A different extension of the KDE idea is to adapt the smoothness parameter w to reflect the 
precision of the local estimate of the data density→ adaptive kernel estimation 20



Going multi-D: K-Nearest Neighbours

The kNN algorithm tries to determine the local density 
of multi-dimensional data by finding how many data points 
are contained in the surroundings of every point in feature space

One usually "weighs" data points with a suitable 
function of the distance from the test point
Problem: how to define the distance in an abstract space?

Also, your features might include real numbers, categories, days of the week, etcetera... 
In general, it is useful to remove the dimensional nature of the features

General recipe: standardization
- find variance σ2, obtain standardized variable y2 = x2 /σ2

21



More on kNN

Once the data is properly standardized one can construct an Euclidean 
distance:

𝐷 𝑦, 𝑦′ =

𝑖=1

𝐷

(𝑦 − 𝑦′)2

kNN density estimates can be endowed with several parameters to 
improve their performance

Most obvious is k: how many events in the ball?

Rule of thumb: estimating a mean → if target varies a lot, can use small 
k; if variation small, k needs to allow precise estimate

Common to have k=20-50, but it of course depends on dimensionality D 
and size N of training data 22



kNN, continued

Also crucial to assess:

- relative importance of variables: assign larger weight to more meaningful 
components in the feature space (ones along which target has largest 
variance)

- local gradients-aware: one may try and adapt the shape of the 
"hyperellipsoid" to reflect how much target y(x) is variable in each 
direction, at test point x*

In general, kNN estimates suffer from a couple of shortcomings:

• The evaluation of local density requires to use all data for each point of 
feature space → CPU expensive (but there are shortcuts)

• The curse of dimensionality: for D>8-9, they become insensitive to local 
density (see next slide)

23



The Curse of Dimensionality

The estimate of density in a D-dimensional space is usually impossible, due to the 

lack of sufficient labeled data for the calculation to be meaningful. An adequate 

amount of data must grow exponentially with D for a good representation

For high problem dimensionality, the k "closest" events 

are in no way close to the point where an estimate of 

the density is sought:

This makes kNN impractical for D > 8-10 dimensions

1/
edge length=(fraction of volume)

D

In 10 dimensions, if a hypersphere captures 1% of the feature space, it has a radius of 63%

in each variable span

HEP analyses often have >10 important variables so the kNN has limited use as a generative 

algorithm for S/B discrimination
24



What If We Ignore Correlations?

All PDF-estimation methods similarly fail when D is large.

A "Naïve Bayesian" approach consists in ignoring altogether the correlations 

between the variables of the feature space

That is, one only looks at the "marginals": 
D

i

i 0

P( ) P( )
=

x x P is a product of 

"marginal PDFs" Pi

One usually models the Pi with a smoothing of histograms

The method works if correlations are unimportant.
In HEP, however, this is not usually the case!

The P(x) thus obtained can be used to construct
a discriminant (a likelihood ratio), or more simply,
to assign the class label to the highest p(x) given x

25



RESAMPLING TECHNIQUES

26



Resampling Techniques
Resampling techniques are pivotal for a number of ML tasks:

• hypothesis testing (construction of discriminative methods)
• estimation of bias and variance (optimization of predictors)
• cross-validation (estimate accuracy of predictors)

Resampling allows you to avoid modeling assumptions, as you
construct a non-parametric model from the data themselves. The 
benefits can be huge
(as measured e.g. by performance of boosting methods)

Here we only briefly flash the generalities of three basic ingredients:
– permutation tests
– bootstrap
– jacknife
– cross-validation techniques will treat later

27



Permutation Sampling

Permutation sampling is mainly used in hypothesis tests; 
usually the question is: are datasets A {x1...XNA

} and B 
{x1...xNB

} sampled from the same parent PDF?

The way to answer is to form a sensitive statistic T (say: 
the mean of the observations) and compare 
quantitatively the difference between TA and TB

ΔT* = TA-TB

with what one would expect if the PDF were the same.

ΔT*

ΔT
𝑃 ∆𝑇∗ = න

∆𝑇∗

∞

∆𝑇

The comparison requires to know how T distributes under the null hypothesis (green 
curve).  
Here permutation comes in: we assume A=B, merge A+B=C, and sample the NA+NB
observations creating all possible pairs of splits A', B' still of size {NA,NB}, computing 
distances ΔT=TA'-TB'.

This provides all the information in the data about the distribution of ΔT. The permutation
test makes no model assumptions, so it is called an exact test.

A

B

x

x

28



The Bootstrap

The Bootstrap (B.Efron, 1979) is called this way 
because it allows to "pull oneself up from 
one's own bootstraps".

Motivating problem: get the variance of an estimator መ𝜃(𝑥) of a parameter θ,
for a sample of i.i.d. observations {x1...xN}.

We may generate M replicas of the dataset X by repeatedly picking N 
observations at random from X, with replacement.

Then we estimate θ in each replica, and proceed to obtain a sample mean 
and variance with the 𝜃𝑖(𝑥),

ҧ𝜃 =
1

𝑀
σ𝑖=1
𝑀 𝜃𝑖

𝑠2𝜃 =
1

𝑀−1
σ𝑖=1
𝑀 ( መ𝜃𝑖 − ҧ𝜃)2

You get an estimate of variance
without assumptions of the distribution

29



THE DATA

30



The data
A set of multi-dimensional data is made of N individual events (AKA cases or 
examples), made up each of D variables (or features, or attributes, or 
predictors)

We can think of our data as a table, where each column is an observed
feature, each line a different event: we can organize them in a NxD matrix

In physics and astrophysics, typically N is large and D is small: these data are 
called "tall"

In other disciplines one instead frequently encounters "wide" data, with few
examples and many features: e.g. in DNA testing one may have thousands of gene 
sequences

The distinction is useful as different ML algorithms apply more successfully to 
the analysis of data depending on their shape; wide data is often problematic

– BDTs can handle wide data just as well as tall data
– resampling techniques may help with wide data
– but kNN and other simple methods do not work well with wide data
– also, linear discriminant analysis encounters difficulties with wide data as

inversion matrix gets singular for N<D 31



Data preprocessing
An important part of data analysis concerns its preprocessing – a sometimes
annoying chore, which forces you to fiddle with non-high-tech tools

You have to preprocess your data if
• some of the features are missing in a few of the events
• there are outliers that spoil the accuracy of your model
• some of the features are categorical

A preprocessing is not mandatory:
- you can remove incomplete events (but see below)
- you may decide to ignore the effect of outliers
- you may split the data in subsets with homogeneous categories and 

proceed with each, or use methods that are robust to their existence
In general, the proper handling of missing data, outliers, and categorical
features can significantly improve your model

32



More preprocessing: 
Centering, scaling, reflections

Some ML algorithms benefit from preprocessing of the features by 
standardization procedures, operated with univariate transforms

Centering: 
Centering consists in subtracting means off the marginals. 
If X = {x1,..,xN} are the relevant coordinates of your N data examples, centering 
produces 

X' = {x1-μ*,...,xN-μ*}, 

where μ* is the observed mean. 

Note that since μ* != μ, E[X]!=0 in general.

33



Scaling and reflections

Scaling: Multiplying each feature by a positive constant
Reflection: multiplication by negative constant

The main application of scaling is to force all features to have the same variance 
(usually chosen to be 1.0 → standardization).
By scaling one can "remove" the dimensional character of different features, to 
facilitate the interpretation of the resulting Euclidean distance

When should you use these preprocessing steps?

• Centering is useless for decision trees, random forests, BDTs
• Centering can instead improve training stability for neural networks (when 

applied with scaling)
• Scaling is useful in kNN applications, which are instead insensitive to 

centering or reflection. The same is true for distance-based methods

34



Data with unbalanced classes

In classification applications, it is usually the case that the amount of training 
data for each class differs. Most algorithms confronted with unbalanced 
training samples will learn more about one class than the other → smaller 
classification error for the oversampled class

To handle this, one can use Bayes theorem, obtaining from the learned p(x|ci) 
a posterior probability p(ci|x) by accounting for the class population in the 
training:

𝑝 𝑐1 𝑥 =
𝑝 𝑥 𝑐1 𝑝(𝑐1)

𝑝 𝑥 𝑐1 𝑝 𝑐1 +𝑝 𝑥 𝑐2 𝑝(𝑐2)

This procedure is also known as "weighting" the training data.

If one wants to mix data in equal proportions, one may undersample the 
majority class or oversample the minority class. The former reduces CPU but 
also information; the latter is effective IF one does it by synthetizing new 
observations. This can be done e.g. using local density estimates (e.g. kNN)

35



THE MODEL

36



The mathematical model

Machine learning relies on building a model of your data: a mathematical 
characterization of the studied system, in probabilistic terms

To build a model, you need
- to understand the structure of your data
- to clarify the problem you want to solve: e.g. regression, classification, clustering, ...

Based on the above inputs, you may choose the most appropriate ML method

E.g. 
- for a low-D regression task, you might want to specify a family of parametric functions, 
and proceed to find the best choice of parameters
- for a complex classification task, you might focus on designing a proper architecture for 
a DNN

The method will learn the model parameters from available training data
The learned model wil allow to make predictions or inference on previously unseen data

37



Parametric or non-parametric?

• Parametric models are fully defined by a 
function, with a fixed set of parameters

f(x;θ) = ....
– They can be a good choice when you want to 

retain insight in what is learned
– They involve an assumption on the behaviour of 

the data → bias

• Non-parametric models do not have a fixed set 
of parameters, and they may become arbitrarily 
more complex as you let them learn more 
information from training data
– Assumption free (almost)
– Higher variance, less bias

38



Going forward or backward

In most applications of interest to fundamental science we observe natural phenomena 
and try to decrypt them by constructing a model, then doing inference on its parameters 

We are helped by simulations that, based on the model, allow to artificially generate
observations based on chosen parameter values.

Problem:  the generative 
process is usually affected by 
stochasticity → cannot be 
reversed trivially, as same θ
lead to different x at random

We have no analytic likelihood!
The inference process 
becomes intractable, forcing
us to use work-arounds.

39



Cases when we can only go forward / 1

40



Cases when we can only go forward / 2

41



Cases when we can only go forward / 3

42



How to deal with this?

We resort to the construction of proper summary statistics, which have a much lower 
dimensionality than the observed data. 

This in general throws away information, unless T is sufficient

Statistical sufficiency: the definition stems from the factorization theorem of Fisher-
Neyman.

T is sufficient for X if

f(X|θ) = h(X) g(T(X)|θ)

in other words, all the information on the unknown parameters θ provided by data X is 
accessible through the function T

The problem is that finding sufficient statistics is very hard, when at all possible. 
Machine learning methods are however capable of extracting summaries from the data 
that offer useful surrogates

43



Generative and Discriminative models

In the light of the ill-defined nature of the PDFs we deal with in our physics 
problems, and bearing in mind the Neyman-Pearson lemma, the goal then 
becomes: estimate p(x|S) and p(x|B), and then construct their ratio r(x)

Many MVA algorithms do precisely that: they approximate multivariate densities. 
Among them are kernel density estimators, nearest neighbors...

→ generative algorithms

or one may approximate the “likelihood ratio”, or a monotonous function of it, 
directly: finding hyperplanes in the observation space where r(x) is constant 
allows then to separate S from B pseudo-optimally

There is a bunch of ways to learn a monotonous function of the LR: linear 
discriminators, BDTs, neural networks. These are globally called 

→ discriminative algorithms

44



LECTURE 1 CONCLUSIONS

45



Conclusions for lecture 1

• Machine learning has a large overlap with statistical learning, which 
has been around for much longer. 
– Emphasis is on large-scale applications, and on prediction accuracy (as 

opposed to emphasis on models and their uncertainty) 

• Density estimation is an important ingredient of many ML methods
– especially when they require pdfs as inputs

• Data preprocessing may be an essential step that pays dividends in 
performance later on

• In fundamental science we often deal with the lack of analytic 
likelihoods
– ML methods can provide effective approximations to summary 

statistics to carry out the inference work

46



Lecture 2
Classification and Decision Trees



CLASSIFICATION

?



Binary Classification

A linear rule A non linear rule A "rectangular" rule

S

B

x1

x2 S

B

x1

x2 S

B

x1

x2

Signal and Background: a common problem in many setups

Generally we know the characteristics of two classes of events, and we wish to 

use them to find the best possible distinction with a fixed rule → a "decision 

boundary" in the feature space of the event characteristics

Low variance (stable), high bias methods High variance, small bias methods



Feature Space and Output Function

Every signal or background event has “D” measured variables

D-dimensional

“feature

space”

y(x)

Test statistic:

y(x): RD
→R:

y  = y(x);  x in RD

x={x1,….,xD}: input variables

One can construct a histogram 
of the resulting values of y(x) 
taken by S and B

One wishes to find a map of the multi-D space of 
features, into a real variable that separates in a 
pseudo-optimal way the two classes



The "ROC" Curve  

y(x)

Cutting harder on y(x)

Smaller selection efficiency

The ROC curve (receiver operating characteristic) is a way to summarize how well 
you are doing with your estimated y(x) in the classification problem

How to quantify ?
- look at rejection at fixed eff
- compute AUC
- many other metrics available



The AUC metric

In some cases it is not trivial to rank classifiers by 
their performance. 

In particular if one does not (yet) have an estimate of 
the proportion of signal and background (class 
probabilities), one cannot decide!

A simple criterion is to compute the area under the 
ROC curve (AUC).
The AUC has a clean statistical interpretation: taken
two events at random, one from each of the two
classes, AUC is the probability that the signal event 
has higher score than the background event.

AUC is a coherent measure of predictive power of y(x) 
if we have no information on the relative 
misclassification cost of the two classes – i.e. if we do 
not know the operating point. The more we know of 
that, the less useful AUC is. 

Which 
is best?

AUC



The Neyman-Pearson Lemma

In a 1932 paper by J. Neyman and E. S. Pearson, "On the Problem of the 
most Efficient Tests of Statistical Hypotheses", the following notable 
result is demonstrated:

Given two simple hypotheses, parametrized by densities p(x|θ1), p(x|θ0) 
that depend on specific values of a parameter, the likelihood ratio 

r(x|θ0,θ1) = p(x|θ1) / p(x|θ0) 

is the most powerful test statistic to discriminate between them.

The importance of this lemma cannot be overstated – it is the ultimate 
weapon for solving inference problems.



How to Build a Classifier

The function

r 𝒙 =
𝑷𝑫𝑭(𝒙|𝑺)

𝑷𝑫𝑭(𝒙|𝑩)

is therefore the best possible classifier of S versus B  → PROBLEM SOLVED! ?

...NO:

- p(x|S), p(x|B) are usually not perfectly known; in typical cases of interest in HEP 

and astro-HEP they may be only estimated by forward simulation, affected by 

stochastic phenomena

- hypotheses are not usually "simple vs simple" – nuisance parameters affect their 

determination

In general: One knows examples of S and B, but not their precise density



The loss function

The mean squared error is a sound measure of the model accuracy, but it is
not necessarily the metric most appropriate for our problem

E.g., in physics analyses we are concerned with the maximum sensitivity to a small 
signal, and we often use as a figure of merit the ratio s/sqrt(b+s) → don't do that

In general, the quality of a predictive model can be quantified by constructing
a function l(y,f(x)), a measure of the distance between the true class label y 
and the predicted response f(x).
One may then define the expected distance

𝐿 𝑋, 𝑌 = 𝐸𝑋,𝑌𝑙 𝑌, 𝑓 𝑋 = 

𝑦∈𝑌

න

𝑋

𝑙 𝑦, 𝑓 𝑥 𝑃 𝑥, 𝑦 𝑑𝑥

over the full space of X and Y. This can be computed empirically, using labelled
data drawn from the pdf p(x,y), by averaging l(y,f(x)):

𝐿 =
1

𝑁


𝑛=1

𝑁

𝑙(𝑦𝑛, 𝑓 𝑥𝑛 )



Regularizing the loss

The parameters of a model, learned through loss minimization, can 
sometimes diverge / be unstable

Often one wishes to regularize the loss by adding some constraining 
term, e.g.

The function Ω, moderated by a strength parameter λ, penalize some 
values of the parameters w



Ridge and Lasso

The regularization of the loss is often done with a L2 or a L1 
norm on the parameters. The behavior one obtains is different.

A L2 norm 

Ω w =𝑤𝑖
2

is equivalent to having a 
Gaussian prior in the 
PDF of the parameters

A L1 norm 

Ω w =|𝑤𝑖|

corresponds instead to 
a prior having a Laplace 
distribution

RIDGE LASSO



What it means



Binary Cross-Entropy

For binary classification, class assignment is modeled by a Bernoulli 
trial probability p following the Binomial distribution

A commonly used loss function
is correspondingly  defined as

High loss for events
with low probability
of being in predicted class



The pains of generalization

Let us investigate what is going on quantitatively when one computes a 
squared loss. Suppose you have a model f(x) trained on data x, that
approximates a random variable t. So this is a regression task.

In terms of expectation values you can write

𝐸 𝑡 = Ƹ𝑡

𝐸 𝑓 𝑥 = መ𝑓 𝑥

One can study the generalization error on t at any value x by expanding

𝐸[ 𝑓 𝑥 − 𝑡 2]=
𝐸 𝑡 − Ƹ𝑡 2 +

Ƹ𝑡 − መ𝑓(𝑥)
2
+

𝐸[ 𝑓(𝑥) − መ𝑓(𝑥)
2
]

Noise term – cannot be
improved with modelingSquared bias: this can be 

reduced with a more 
complex model Variance term: the more 

complex the model, the 
higher this term, as it 
tries to capture erratic 
behavior



Bias-Variance Tradeoff

With larger amounts of data the model can become more complex (smaller bias), 
because the variance diminishes→ can live further on the right in the graph

Optimal 
tradeoff

Model complexity

Squared 
error

Bias2

Variance

Total 
squared
error



Training and testing

In order to construct and study a classifier built with a supervised algorithm – e.g. a 
decision tree, one needs labelled data from the two classes. The more data, the better!

One must decide how to use the available labeled data in the 
construction of the classifier or regressor. Can we use the same data 
for both training and testing?
Answer: No – the error estimated in the training phase 
("resubstitution error") is optimistic: this is the phenomenon called 
over-training

During training, the model attempts to learn the features of the joint 
distribution p(x,y) of data x and labels (or values, in regression) y

But training data carries noise with it – and this component will be 
learned by a flexible model too, deteriorating the accuracy on data 
not seen in the training phase



Predictor variable 1

P
re

d
ic

to
r 
v

a
ri
a

b
le

 2

© 2018 The 
MathWorks Inc.



Predictor variable 1

P
re

d
ic

to
r 
v

a
ri
a

b
le

 2

Training error:

7/42 = 16.7%

© 2018 The 
MathWorks Inc.



Predictor variable 1

P
re

d
ic

to
r 
v

a
ri
a

b
le

 2

Testing 

(validation) 

error:

2/15 = 13.3%

© 2018 The 
MathWorks Inc.



Predictor variable 1

P
re

d
ic

to
r 
v

a
ri
a

b
le

 2

Training error:

0/42 = 0%

© 2018 The 
MathWorks Inc.



Predictor variable 1

P
re

d
ic

to
r 
v

a
ri
a

b
le

 2

Testing 

(validation) 

error:

4/15 = 26.7%

© 2018 The 
MathWorks Inc.



Training vs Testing

So we split the labelled data into training and testing subsets. 

Let us consider a decision tree where we vary the leaf size from 1 
(perfect classification at training stage) to N (training size, no tree). 
As the size of leaves increases we go from a flexible, high-variance 
tree to a robust, but high-bias one.

We observe that the training error increases with leaf size.
This is a general property:  the training error decreases with the 
model complexity

The test error instead decreases with leaf size until an optimal value 
is reached, which is close to the Bayes error.

(The above behaviour is not universal; for e.g. ensemble learners the 
test error also increases monotonically with leaf size)

Leaf size

MSE



One fitting example

The problem cannot be "solved" by
training data alone, as a more complex
model would always seem to work
better than a simpler one

A graph of the MSE vs model complexity
is all that is needed to see what
model complexity is appropriate.
But we use test data for that!

Here we have training data (blue 
crosses) and a few polynomial models
that try to capture their variation (y)
by minimizing the mean square error

Validation data (red points) also shown



Training, Validation, Testing

In order to construct and study a classifier built with a supervised algorithm – e.g. a BDT, 
one needs labelled data from the two classes. 

Be given a sample of NS signal events and NB background events, one usually separates
these sets in three parts:

Training set: events used to build the classifier. The algorithm
employs them to estimate the prior densities of S and B, or directly
the likelihood ratio or a monotonous function of it
Validation set: this is used to understand whether the training was
too aggressive (overfitting), and to tune the algorithm parameters
for best results
Test set: this sample is totally independent from the former two, 
and it is used to obtain a unbiased estimate of the final
performance of the model, previously learned, validated and 
optimized.

The quality of the generalization can be further studied by more
advanced partitions and resampling techniques. A common one is
k-fold cross validation (see below). 



Leave-one-out Cross Validation

You can come up with the idea of removing just one event from the set. Train 
the learner on N-1 events, and test it on the Nth one:

MSEN = (yN-y*)2

That is a very rough estimate! But we can iterate on all N and take the mean:
<MSE> = 1/N Sumi (MSEi)

You are using almost all data for training, so the returned answer is stable and 
has low variance; plus, the method is deterministic.

LOOCV is good, but can be very CPU consuming for large samples → use it 
only for very small data sizes.

Data is costly! So, often it is impractical to keep large holdout samples
for validation.

Imagine you want to optimize a hyperparameter s affecting the 
precision of your model. How to proceed?



k-Fold Cross Validation

Recipe:

• Divide training data into N equally 
sized subsets (N=5-10 is typical)

• For each k=1...N, train a classifier, or 
fit data with k-th sample as hold-out; 
apply to k-th subset and obtain error 
(or loss) Ek(s)

• Obtain CV error by averaging: 
CVE(s) = 1/N Sum(Ek(s))

• Pick s such that CVE is minimum

Narsky advises N=10 for most problems.

Training sample

VT T TT

V

V

V

V

T

T

T

T T T T

T T T

T T T

T T T

E1(s)

E2(s)

E3(s)

E4(s)

E5(s)

Leave-one-out cross validation can be generalized by leaving out 1/kth of the 
data
If k is >4, the training accuracy is not affected significantly, and we still get a 
reasonable estimate of the uncertainty.



LOSS MINIMIZATION



Gradient Descent

To minimize –log L and find optimal value of model parameters, in the 
absence of an analytical description, we "descend" toward the 
minimum by approximating the shortest route with local information:

1) find gradient of L w.r.t. parameters w:   
𝜕𝐿(𝑤)

𝜕𝑤
2) update parameters:

𝑤′ ← 𝑤 − 𝜂
𝜕𝐿(𝑤)

𝜕𝑤

and iterate.

Success depends on how fast you 
descend, moduled by "learning rate" η.



Stochastic Gradient Descent
Computing the gradient over the whole training set at each step is sub-optimal:
• CPU-intensive (must pass all dataset)
• large memory use, intractable if too large datasets
• does not allow updates on-the-fly (adding data online)
Also, it can become ineffective, as risk of getting stuck in local minima is large in multi-D
Most modern deep ML methods employ "stochastic" techniques to find the optimal 
working point / parameter values

This relies on the possibility to decompose 
the loss function into the sum of per-
example losses.
SGD updates parameters on a per-event 
basis → objective function becomes noisy, 
but this has merits (can jump out of local 
minima)



Mini-batch SGD

One may improve on per-event SGD updating by computing 
the gradient over small batches of training data

→ get the best of both worlds: 
- fast 
- no memory issues 
- scales well with data size
- still can jump out of local minima 
- noise averages out a bit

Recipe:
𝑤 ← 𝑤 − 𝜂 ∙ 𝛻𝑤L(w; 𝑥

𝑖:𝑖+𝑀, 𝑦𝑖:𝑖+𝑀)



Advanced descent strategies

Finding the real, absolute minimum of a 
function with many parameters in a multi-D 
space can be very tricky, and take a lot of 
time

A number of variants of mini-batch SGD 
exist on the market:
• momentum descent
• ADA gradient
• ADAM
• Nesterov accelerated gradient (NAG)
• and others

Their performance depends on the specific 
problem, the data size, sparsity, etcetera

Take-home bit: don't just pick the first off 
the shelf. Experiment with different 
methods, try to understand what is best for 
your case http://danielnouri.org/notes/category/deep-learning/#changing-

learning-rate-and-momentum-over-time



DECISION TREES



Decision Trees
A "decision tree" is a tree constructed by "leaves" that are rules to split the data in
the different classes, based on the data features.

If each event to be classified has variables x1, x2, x3, x4 ...., I may create a tree by posing
conditions on each variable, in a chain

A decision tree is not generally
restricted to two possible decisions,
but the most simple problems lend
themselves to this form

What the tree does for you is to partition
the multi-D space describing the possible
states of an observation (right: atmospheric 
weather used to decide whether to play
Tennis) in hypercubes where the decision
optimizes some quantity of our interest
(in this case the satisfaction of playing)



Two-Variable Example

The graph shows how the decision space of two variables could be partitioned
by a decision tree with a large number of "splits".

The tree operates "linear cuts" (such as x<x* or similar). Yet, due to the branching
nature of the structure, very complex decision boundaries may be created

Due to their simplicity, and 
the absence of variable 
transformations,
DTs were among the first
MVA algorithms adopted for
HEP S/B discrimination 
problems.



Training a tree

Splits are obtained by conditions on a single feature (j) of the data at a time, 
x(j) < > t*

The probability of a class at each split is evaluated by the number of examples 
of that class in the partitioned set Nm from training data, 

p(ci) = Nim/Nm

We take the Nm events of the parent node m and for each split criterion θ = 
(x(j), t*m) we get two subset Qleft, Qright of size nleft, nright. We then compute the 
function

H() is an impurity measure (see below). We may now compute the best split: 

(elsewhere one equivalently finds this described
as "maximizing the impurity gain", defining
ΔΙ=I0-IL-IR, and choosing max ΔI)



Three measures of node impurity

To grow effective trees, we need nodes to be as pure as possible. On the 
other hand we also need nodes to not have too small probability, or we 
will be overfitting the training data. 
The two criteria are conflicting for classes that overlap. So we need to first 
of all define a measure of impurity of each node.
It is common to define this as a symmetrical function I(t)=φ(p,q), when p, 
q are the relative frequencies of the two classes in node t, and with φ(0,1) 
= φ(1,0) = 0, and φ(½,½)= ½ 

If we just look at the classification error for one class as a measure of 
impurity, then we have 

φ(p,q) = 1 – max (p,q). 
This obliges the above definitions, but being linear it does not lend itself 
as an attractive way to optimize the tree construction. 

A better (and non-linear) rule is the cross-entropy, defined as
φ(p,q) = –p log2p –q log2q

The third impurity measure is the Gini impurity index (see next slide).

p
q



The Gini diversity index

The Gini index or Gini coefficient is a statistical measure of 
distribution developed by the Italian statistician Corrado 
Gini in 1912. It is very well known as a gauge of economic 
inequality, but it has much broader applications.

If a population includes two classes of elements, 
with relative frequencies p and q (i.e. defined so 
that p+q=1), the Gini index is the symmetric 
function φ(p,q) = 1–p2–q2

As before, φ(0,1) = φ(1,0) = 0 indicates that the 
population is pure (only contains elements of 
one type), while φ(½,½)=½ indicates maximum 
entropy.   

Clearly an equivalent definition is φ(p,q) = 2pq

p
q



DT: the perfect classifier?

If you allow your tree 
to grow indefinitely, it 
will continue to split 
impure nodes, ending 
up classifying events in 
"pure" leaves

Of course this has 
huge variance, and in 
fact it is a blatant 
example of overfitting 
the training data



When to stop?

As the leaf size decreases, 
leaves increasingly 
contain only events of 
one class

But this is true only for 
training data!

Validation is crucial to 
decide where to stop

The graph on the right, 
showing classification 
error versus leaf size, is 
quite typical of decision 
trees



Pros and cons

• Decision trees are an attractive choice for applications where 
performance is not the culprit:
– they are extremely simple to interpret (in low D!)
– they demand no preprocessing (scaling, standardization) and handle 

categorical data easily
– they work well regardless of number of dimensions of feature space

• But DTs have shortcomings, too:
– overfitting is under no control → a careful validation is required
– they are not stable WRT perturbations of the input data: change the 

training by a little, and the tree can grow very differently
– The local optimization of tree splits does not guarantee reaching a 

global optimum (a NP complete problem)

There are ways to overcome the above shortcomings. They rely on 
early stopping, and ensemble methods.



Early stopping criteria

To mitigate the 
overfitting, one can 
adopt a fixed rule, 
such as:
- set a minimum 

number of events 
per leaf

- set a max number 
of leaves

- set a max tree 
depth

These recipes all 
work, although it is 
not easy to decide 
what is best for each 
case

[Rogozhnikov]



Pruning

Pruning means what it means: cut branches, replacing each with the node at their 
root. It is a form of regularization: we reduce the model complexity, hoping that the 
variance gain is not offset by a bias loss.

One may treat pruning by defining a risk function for each node t as the classification 
error of the node weighted by its probability,

𝑟 𝑡 = 𝑝(𝑡)휀(𝑡)

and for a tree as the sum over all leaves of the tree:

𝑟 𝑇 = 

𝑡∈𝐿(𝑡)

𝑟(𝑡)

When using training data, r(T) will tend to zero; one can however try to penalize the 
overtraining by adding to r(T) a term proportional to the number of leaves of the tree.



Ensemble methods

Here we take the case of decision trees to illustrate the power of 
ensemble methods, which are however applicable to any supervised 
learning tool

The idea is that we can reduce the variance of a prediction without 
increasing the bias, a "holy grail" in statistics. How can we do that? 

By training slightly different models and taking a majority vote (for 
classification; for regression one would average the scores).
• The bias does not increase because the result behaves similarly to 

any one of the inputs: the average ensemble performance is equal 
to the average performance of its members.

• The variance does decrease because fluctuations and noisy 
predictions are averaged out: a spurious pattern picked up by one 
model will be damped in the pool



Combining weak learners

A combination of the prediction of several weak learners (small 
correlation with target value) with high variance can be a 
powerful model!

For decision trees the benefit is also the control of overfitting, 
as the "perfect classification" issue of growing pure leaves is 
solved automatically



Bagging and Boosting

Bagging ("Bootstrap aggregating") is a very effective ensemble technique 
employing bootstrap to leverage the replica of training sets

The training dataset is sampled with replacement, and every time a new 
classifier is trained with the resulting set
The prediction is obtained by a majority vote of the pool of classifiers, or by 
an average (in case of regression)

• The Random Forest algorithm uses bagging to stabilize the response (see 
below)

The idea of Boosting is instead to train a sequence of models, each of which 
gives more weight to events not classified correctly by the previous ones.

• At the heart of boosted decision trees



The ADABoost algorithm

Similar schemes are used by other algorithms (Gradient Boosting, XGBoost, ...)



Example: averaging trees
Trees grown on bootstrapped training data learn different decision 
boundaries; the averaging does better than any of the inputs



Random Forests

The Random Forest algorithm was first proposed by Breiman (2001), but is based on 
a 1995 idea of Tim Kan Ho.

RF employs two ensemble techniques. The first is bagging of the training sample, to 
grow a forest of different trees based on different training data. The second is the 
subsampling of the feature space.

If I choose a subset of the variables (e.g. x1, x3, x7) to create a split in a node of a 
decision tree, and another subset (x2, x4, , x5, x7) to create a different one, there will 
be events that get classified in a different way by the two nodes.

Often there is a dominant variables that is used to decide the split, offsetting the 
power of the subdominant ones. RF avoids that problem by reducing the correlation 
of different tres.

RF grows trees where at each node a subset (typically of size D0.5, where D is the 
dimensionality of the feature space) of the features is used to find the best split.



Ensembles of trees: RF

Tree ensembles (like the Random
Forest algorithm) have a number
of attractive properties

- they usually do not overfit
- they are powerful learners

In addition they retain the 
advantages of DTs:

- they are simple to understand 
and interpret

- easy to train
- They work equally well with 

continuous as well as categorical 
data types

- no need to pre-process the data 
(e.g. invariant to standardization)



Fun with Gradient Boosting

• See 
http://arogozhnikov.github.io/2016/07/05/gra
dient_boosting_playground.html

http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html


LECTURE 2 CONCLUSIONS



Conclusions for lecture 2

• Classification is a rich subject, and solutions depend on the specific 
needs of the problem
– metrics for optimality vary a lot

• The loss function contains the recipe to give you the answer you 
want – pay attention to put it together (adding regularization where 
useful)

• Overfitting / overtraining must be avoided by careful testing; 
optimization handled with independent dataset. Apply cross 
validation when data is scarce, k=5-10 typically good

• Random Forests / boosted trees are a very flexible, interpretable, 
powerful learner. Often hard to beat



Lecture 3 
Neural networks



NEURAL NETWORKS



Neural Networks - introduction

An artificial neural network (ANN) is a program that simulates the behaviour of a series of 
neurons and their connections

ANNs are capable of producing  very flexible functions of the feature space variables

At the heart of the ANN there is an architecture of nodes organized in layers. Every "neuron" 
of a layer receives inputs from some of (or all) the neurons of the previous layer

Neural networks are extremely powerful tools for supervised learning tasks, such as 
classification and regression. 



Looking inside

For binary classification problems, the loss function may be simply the fraction of 
misclassified events. From that one can construct a binary cross entropy.

The crucial step in the minimization phase is "back-propagation".
Training events are used to compute the loss function. During back-propagation the 
contribution of each neuron (with associated weight and bias) to the loss is computed. This 
way one may estimate how the loss would change if those parameters were changed. The 
iteration of the procedure allows to obtain optimal values, with different convergence 
strategies possible (e.g. "gradient descent").

Each neuron may emit a strong or weak signal, in response 
to the combined stimulus coming from its inputs →
activation functions parametrize the response signal.

The signal is transmitted to the neurons connected to it in 
the next layer.
Mathematically, the behaviour of every neuron is 
described by two parameters (a bias and a weight). The 
training phase of the ANN (learning) consists in finding 
parameter values which minimize a loss function



The Perceptron

The perceptron is the simplest NN

The idea is to try to create a mathematical model of a single 
neuron, as a "node" which receives several inputs, sums them, 
and gets "activated" if the sum surpasses a fixed threshold
The perceptron task is to select between two classes based in the 
inputs it receives. The inputs are combined linearly:

𝑢 = 𝑤𝑇𝑥 + 𝑏

Above, x is a vector of inputs, and w is a "weight vector", b is a 
constant bias. The output is calculated as 

𝑜 𝑢 =
+1 𝑖𝑓 𝑢 ≥ 0
−1 𝑖𝑓 𝑢 < 0

The predicted class here depends on the sign of u. As w and b 
define a hyperplane in the feature space:

𝑤𝑇𝑥 + 𝑏 = 0, 
by adjusting their values one can achieve ideal classification if the 
classes are linearly separable

o(u)

u



Learning w and b
Suppose we have training data {xi}, i=1...N for the two classes, labeled as such:

yi = +1      for i in C1

yi = -1       for i in C2

To simplify the math, we include b in the weight vector, adding a 0th component to 
x=[1,x1,...,xm] and w={b,w1,...wm}.

If for an event i we write 𝑢𝑖 = 𝑤𝑇𝑥𝑖, then (due to how we defined y) 𝑢𝑖𝑦𝑖 is >0  (<0) if 
the event is classified correctly (incorrectly). We can then write an error function, if we 
define M(w) the set of misclassified events:

𝑒 𝑤 = −
𝑖∈𝑀

𝑤𝑇𝑥𝑖𝑦𝑖

We can minimize this function to find the optimal weights. This is done by iteratively 
stepping in the right direction:

𝑤 𝑘 + 1 = 𝑤 𝑘 − 𝛻𝑒 𝑤 𝑘 =
𝑤 𝑘 𝑖𝑓 𝑖 ∉ 𝑀

𝑤 𝑘 + 𝑥𝑖𝑦𝑖 𝑖𝑓 𝑖 ∈ 𝑀

This way, the weights get adjusted to reduce the misclassification error.



The smooth output: logistic sigmoid

In neural networks, rather than a 
discontinuous score as in the perceptron, 
the response of a neuron is modeled by a 
continuous, differentiable function 
The simplest of these is the sigmoid. 

In logistic regression, one assigns a 
probability to events based on the 
distance from the boundary, using the 
logistic sigmoid function:

[M.Kagan]



Meaning of the sigmoid

If we express the posterior probability of x to be in class C1 as a 
sigmoid,

𝑝 𝐶1 𝑥 =
𝑝 𝑥 𝐶1 𝑝 𝐶1
𝑝 𝑥 𝐶1 ∪ 𝐶2

= 𝜎 𝑢 =
1

1 + 𝑒−𝑢

we can compute the inverse of σ as

𝑢 = log
𝜎

1 − 𝜎
= log

𝑝(𝐶1|𝑥)

𝑝(𝐶2|𝑥)

This is called logit function, and corresponds to the log of the relative 
posterior odds.



The feed-forward neural network

We can put together these elements to 
create a non-linear function of the 
inputs, which can learn much more 
complex separation boundaries than a 
hyperplane

A feed-forward NN is composed of 
nodes connected by forward links. 
There is >=1 hidden layer, and one 
output layer 

– for binary classification, all you need 
is one node in it

The nodes need not all be connected, 
but there must be no circular reference 
– the value of a node must be a 
deterministic function of what comes 
before

z1

z2

1

a21

z3

o1

1

a11

L0 (input) L1 (hidden)      L2 (output)

bias terms



Calculation of the function

The FFNN is a complex, differentiable function of the inputs, and it offers a 
simple solution to the problem of optimizing its parameters. 

For a formal treatment let us define:
• zi be the inputs to node i (i=1,...Z, where Z is the number of inputs for 

that node; z0=1). For layer 0 (input layer), zi=xi is the vector of inputs. 
[When we need to specify it, we add an index j for the node and an index m for the 
layer, so zijm is the ith input to the jth node of the mth layer]

• wijm be the vector of weights for that node (with w0jm=bjm the bias 
term).

The rule is that at each node the inputs are summed with a linear 
weighting, to obtain the activation of that node, a (ajm when needed):

𝑎 =

𝑖=0

𝑍

𝑤𝑖𝑧𝑖 i=1...Z inputs for a node
j=1...J nodes of a layer
m=1...M layers



Adding nonlinearity

Nonlinearity is introduced by choosing a suitable continuous differentiable 
function of a to model the behaviour of the node. A common choice for inner 
layers is

ℎ 𝑎 = tanh(𝑎)
whose derivative is

ℎ′ 𝑎 = 1 − ℎ(𝑎)2

For the output layer, as we saw, the sigmoid is the common choice for binary 
classification (one output). For K classes, one uses the soft-max 
generalization, which retains the interpretability of outputs as posterior 
probabilities:

𝑜𝑘 = 𝜎 𝑎𝑘 =
𝑒𝑎𝑘

σ𝑖=1
𝐾 𝑒𝑎𝑖



Calculation/2

Let us consider a 3/2/1 architecture, and compute 
activations in the hidden layer as

𝑎𝑗1 =
𝑖=0

3

𝑤𝑖𝑗1𝑥𝑖

The output layer receives as inputs the sum of j=1, j=2 activation functions 

𝑧𝑗 = ℎ 𝑎𝑗1 = tanh𝑎𝑗1
The activation in the output layer is then

𝑎 =
𝑖=0

2

𝑤𝑖12𝑧𝑖

and the output is the activation function (a sigmoid) of the above:
𝑜 = 𝜎 𝑎

= 1 + exp −𝑤012 −
𝑗=1

2

𝑤𝑗12 tanh 𝑤0𝑗1 +
𝑖=1

3

𝑤𝑖𝑗1𝑥𝑖

−1

(node 1 of layer 2)

(for each node j:)



Backpropagation: 
where the magic happens

Consider the two-class case, with binary output y12=1/0 for signal and 
background, and the 3/2/1 2-layer network of the previous slides. If 
a(x,w) is the activation on the output node, the output is

𝑜 𝑥, 𝑤 =
1

1 + 𝑒−𝑎(𝑥,𝑤)

This means that p(C1|x)=o(x,w), and p(C2|x)=1-o(x,w) so we can write 
syntetically

p(y|x) = o(x,w)y  [1-o(x,w)]1-y

We have a differentiable model of the class probabilities, so we may 
write the –log(L) for a training dataset {x(1)...x(N)} as

𝑒 𝑤 = −σ𝑛=1
𝑁 𝑦𝑛 log 𝑜𝑛 𝑥𝑛, 𝑤 + (1 − 𝑦𝑛) log(1 − 𝑜𝑛 𝑥𝑛, 𝑤 )

This is called (binary) cross entropy; it is the most commonly used loss 
for classification.



Finding the weights
To find the optimal weights, we need to minimize the BCE loss. We are 
helped by noting that the loss is decomposable in per-event 
contributions en, which are a function of the weights. We need to only 
find the gradient of the error function with respect to each weight:

𝑒𝑛 𝑤 = − 𝑦𝑛 log 𝑜𝑛 (𝑥𝑛, 𝑤) + 1 − 𝑦𝑛 𝑙𝑜𝑔 1 − 𝑜𝑛(𝑥𝑛, 𝑤)

We take the derivative of en WRT the weight for the ith input to node j 
in layer m, wijm:

𝜕𝑒𝑛
𝜕𝑤𝑖𝑗𝑚

=
𝜕𝑒𝑛
𝜕𝑎𝑗𝑚

𝜕𝑎𝑗𝑚

𝜕𝑤𝑖𝑗𝑚
= 𝑒𝑛𝑗𝑚𝑧𝑖𝑗𝑚

where 𝑒𝑛𝑗𝑚 =
𝜕𝑒𝑛

𝜕𝑎𝑗𝑚
and we have used the activation

𝑎𝑗𝑚 =
𝑖=0

𝑛𝑚−1

𝑤𝑖𝑗𝑚𝑧𝑖𝑗𝑚



Finding the weights/2

We work our way from the output layer M to the previous ones. While for the 
output layer the error caused by event n is en1M=on-yn, for nodes at layer m=M-1 
we should write

𝑒𝑛𝑗𝑚 =
𝜕𝑒𝑛
𝜕𝑎𝑗𝑚

=
𝑞=1

𝑛𝑚+1 𝜕𝑒𝑛
𝜕𝑎𝑞,𝑚+1

𝜕𝑎𝑞,𝑚+1

𝜕𝑎𝑗𝑚
=

𝑞=1

𝑛𝑚+1

𝑒𝑛𝑞,𝑚+1

𝜕𝑎𝑞,𝑚+1

𝜕𝑎𝑗𝑚

To evaluate derivatives we proceed thus:
𝜕𝑎𝑞,𝑚+1

𝜕𝑎𝑗𝑚
=

=
𝑖=1

𝑛𝑚
𝑤𝑖𝑞,𝑚+1

𝜕𝑧𝑖𝑞,𝑚+1

𝜕𝑎𝑗𝑚
= 

𝑖=1

𝑛𝑚
𝑤𝑖𝑞,𝑚+1

𝜕ℎ(𝑎𝑖𝑚)

𝜕𝑎𝑗𝑚
=𝑤𝑖𝑞,𝑚+1ℎ′(𝑎𝑗𝑚)

Hence we find

𝑒𝑛𝑗𝑚 = ℎ′(𝑎𝑗𝑚)
𝑞=1

𝑛𝑚+1

𝑤𝑞𝑗,𝑚+1𝑒𝑛𝑞,𝑚+1

(At layer m+1=M there is 
only one node, but this 
formula works for any layer)

Remember:



Finding the weights/3

The formulas of the previous slide allow us to work our way back 
recursively through the NN, using the chain rule. 
For tanh() activation in inner layers the error contribution of event n due 
to weights in node j of layer m is written

𝑒𝑛𝑗𝑚 = 1 − ℎ(𝑎𝑗𝑚)
2 

𝑞=1

𝑛𝑚+1

𝑤𝑞𝑗,𝑚+1𝑒𝑛𝑞,𝑚+1

The weight updating process is iterative, and modulated by a learning 
rate η:

𝑤(𝑘+1) = 𝑤𝑘 − 𝜂𝛻𝑒(𝑤𝑘)

One may choose to use the whole training set to evaluate the gradient 
(batch learning), or to update weights at each new event evaluation 
(online learning). They have different applications and properties. 

Online learning is better fit to jump out of minima, but the learning may 
take longer. 



Choices of Activation function

We want it non-linear, otherwise hidden layers do nothing; it must be monotonic to 
ensure convergence of the optimization problem; and smooth. Often also preferable to 
have rapidly changing for input close to zero, slowly changing for large input



Learning rate

Above we mentioned the learning rate – the 
parameter η controlling how fast the 
parameters of the learner are updated

In a NN the weights, on which depend the 
strength of the response of an activated 
node, are adjourned by back-propagation

For NNs η is one of the crucial parameters in 
the search of optimality

Advanced techniques have been devised to 
overcome the difficulty. These include slowly 
decreasing η, scheduled modulations in η, 
momentum, etcetera. 



Regularization

We have already encountered the concept in general. In ANNs, 
regularization is similarly applied by adding to the loss a penalty term
• L1 loss: 
• L2 loss: (AKA "weight decay")

A different method is called "dropout": during training, a random set 
of nodes is removed at each pass.
• prevents collective effects conditioning the training

[M.Kagan; see
arxiv:1207.0580]



Playing with NNs



Let us play a little

A wonderful web page allows us to fiddle with the 
architecture and hyperparameters of a NN, training it to 
solve simple 2D problems.

https://playground.tensorflow.org/

https://playground.tensorflow.org/


Exercises with simple NNs

1) We take the first proposed dataset 
in the web site

What will be able to do if we use only 
one input (e.g. the first one from top) ? 



→ Answer: you can't do better than about 0.25, independently of the 
chosen architecture / hyperparameters

Left: the simplest 
possible NN quickly
converges to the 
optimal result

Right: a much more complex 
network does not perform any
better, but takes much longer
and requires tuning



2) What if we use both the x and y inputs? What changes 
when we go from a 2-nodes hidden layer to one with more ?



Top: two nodes 
in the hidden 
layer. The test 
loss is 0.21

Bottom: three 
nodes vastly 
outperform the 
2-node NN; the 
classification 
becomes 
perfect in this 
case



2b) What happens if we add more inputs, but keep just two nodes in 
the hidden layer?
→ A 3/2/1 architecture, and let's use a tanh activation, with 0.03 

learning rate.
What test loss can you get ? What inputs did you pick?



With 3 inputs the classification becomes perfect even 
with only two nodes in the hidden layer. Why?



3) Now let's try using two inputs and three nodes in the HL, but change from 
tanh to relu the activation function.

What do we expect will change?



We get a more spikey decision boundary, an effect of the sharp nature of 
"relu"
Question: why 6 sides? How many edges do you expect in the decision 
boundary if you use 4 neurons?



8? Not necessarily!...

Why?



Here is a pathological case:

we seem to fail to obtain the wanted result from these three neurons! 
Maybe we can intervene to drift away from the local minimum?

The application 
allows you to do this 
manually, by clicking 
on the link 
connecting the first 
hidden node from 
the top to the 
output one, 
modifying the 
weight



Let us go back to the tanh activation

This problem is much more complex. We can start with only two inputs 
x,y

Try this at home. What result do you get ? Do you need many layers? How 
long does the training requires to converge ?

And take the 4th dataset:



Using only x,y inputs it is harder to get to a good result...

But why? After all, {x,y} are a complete set – a sufficient statistic! 
By sweating over this simple problem you will come to learn that in 
order to give the NN the needed flexibility to learn the correct non-
linear combinations of the given features, you need to train for a much 
longer number of epochs.

Note that a NN can perfectly
well emulate, with appropriate
training, whatever combination
of the inputs, without your need
to input it to it.

But this points clearly to a 
conclusion:

A bit of feature engineering
is worth many long hours spent
training a very flexible network!



Final Challenge

Try this at home.

Take the fourth dataset, and use a tanh activation. Use == 
4 inputs of your choice, 2 hidden layers, and a maximum 
total of 6 nodes in the hidden layers

What test loss do you get ?

(Hint: you should get a loss close to zero)

Extra: if you can get a good score, can you do it with one 
less node?



My solution



ADVANCED TECHNIQUES



NNs everywhere

The ascent of deep learning 
in the XXI century has 
brought to the design and 
development of many 
specialized architectures 
optimized to different tasks

We can give only a peek, as 
it is more fruitful to make 
sure you have gotten the 
gist of the basic concepts



The multi-body problem
The more one works on a NN, the better results can be achieved (up to a limit given by 
the NP lemma, which is however not usually achieved)
So is the message "take a problem and work at it very hard"? Not necessarily...
Take e.g. a HEP analysis where e.g. we want to measure the mass of a particle (e.g. top 
quark). There are multi-variate problems everywhere:

unfiltered 
data

selected 
events

independent 
dataset

selected 
control 
sample

classification

mass 
regression

energy calibration

Mtop

Systematics

It makes little sense to spend all
your time on one of these... That is
poor analysis design!
Better to try and optimize everything
together if you can... Or get some 
robust tool for each task



Deep neural networks

What is "deep"? Arguable, but already a network with >2 hidden layers can be 
enormously complex

DNNs are appropriate for very complex data. While a single hidden layer should suffice 
to produce arbitrarily complex functions, to do so the number of neurons has to grow 
exponentially → better to increase the number of layers, essentially factorizing the 
learning process

DNNs can be powerful but are usually difficult to train



Convolutional neural networks
CNNs are a specialized form of DNNs
A very important commercial application is image recognition → used 
to drive cars, recognize faces, interpret content

The challenge in those cases is that the 
dimensionality of the input data is very 
large, but the required output is simple 
→ dimensionality reduction problem

A convolution can be applied to reduce 
the dimensionality of the input (e.g. a 
high-res image), trying to grasp the 
essential information that can produce a 
meaningful output

Each output neuron shares weights from 
former layer with the others, so the 
classification acquires location-
invariance



Convolutional neural networks

A convolution can be applied to reduce the dimensionality 
of the input (e.g. a high-res image), retaining the 
important information for later more effective processing

http://danielnouri.org

A number of "filters" can be used
to reduce the input data



Example of 3x3 filter



Example of a blurring 5x5 filter



A 5x5 sharpening filter



Example of a 3x3 edge detector



A 3x3 all-edge detector



Max pooling

A different reduction of dimensionality is achieved by the method of 
"max pooling", which retains the most interesting information from 
the inputs, producing in the output a more compact map of the image



Feature detection



PRACTICAL TIPS



Step 0: γνῶθι σεαυτόν

First of all, you should understand the specific 
needs of your problem. Name it!, e.g. 

• Classification? Multi-class classification? Regression? Clustering? 
Density estimation? Hypothesis test? Goodness of fit? 
Optimization? ...

• Is it supervised or not supervised? 
• If classification, do you need to estimate densities or can you 

directly create a discriminator? 
• What dimensionality do your data have? High/low/can be 

reduced/cannot ... 
• Are your data tall, wide, do they miss entries... ? Does it look like 

you need to work on preprocessing / data augmentation?
• Do you aim for a robust result or a performant one?



Step 1: choosing what fits

• Want something simple? kNN may do very well for low-D (or if you can 
reduce D)

• Want insight in algorithm choices? Prefer decision trees
• Need high performance, aren't scared of complex optimization? A (D)NN 

can be your best friend (for a long time ☺)

In general, you should know that there is no free lunch (Wolpert, 1996)! It 
was shown that there is no a priori method that outperforms others if no 
prior specification of the problem is given.
[This is analogue to the issue "what GOF measure is best?" → there is no 
answer, it depends on the specific density]

This is why many different algorithms exist, and more are coming in...

But some general empirical observations have been made



Empirical analysis

A survey of 179 methods (not including DNNs) was made testing them 
on 121 datasets 
→ RF was the best performer in 84% of cases (see 
http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf)

Kaggle competitions also allow to draw some conclusions (M.Kagan):

• When high-level features informative of the system are present, 
winners are often RF

• When you have lots of unstructured, low-level information per event, 
DNN outperform all others 

• CNNs typically work best in image classification, RNN excel in 
text/speech recognition 

http://jmlr.csail.mit.edu/papers/volume15/delgado14a/delgado14a.pdf


Random bits

• Check what others have done in similar problems, even outside your domain –
study the literature if you at all can!

• Try simple things first – they may be all you need (and they might even be best)

• Don't avoid preprocessing! Study your data to see if there are degeneracies that 
allow you to augment your training set

• Always set up a robust validation scheme; divide your data accordingly; do not use 
validation data for testing. 

• Check for overtraining using cross-validation, but don't forget to avoid 
undertraining!

• Use CV also to tune all the hyperparameters that may affect your results



CONCLUSIONS



Conclusions

I do hope these lectures have brought you a bit closer to the world of 
Machine Learning

- or at least that I have not bored you to death, if you knew 
everything already!

As with any field in rapid development, you do not need to become all-
knowledgeable before you can become a practicioner: on the contrary! 
The best advice I can give you is - Jump in wherever you see fit and 
start swimming!

You will be surprised to see how fun it is to play with these tools – not 
to mention the fun you may have by coding your own methods 
(although clearly that's not everybody's definition of "fun"...)



Some take-away bits

• Don't look for complex solutions when simple ones work well
– Hastie: often kNN performs best !
– Useful to understand easy tools before you can exploit hard ones 

• As powerful as individual tools are, they aren't the answer to the question 
"what is best"
– the mastery of the data analyzer is to optimally combine the proper 

ingredients to achieve their task, and then add the killing bit that is only useful 
in the particular application at hand

• In NN design, the loss function is where the money is
– improvements in the inputs have also large impact in results (see tutorials)
– smart scanning for absolute minimum is important
– attempts to improve on already reasonably flexible designs likely to not give as 

big gains



Thank you!


