Axion dark matter (theory and experiment)

Andreas Ringwald
TAUP2023
Vienna, Austria
28th August – 1st September 2023

[Peccei,Quinn `77; Weinberg `78; Wilczek `78]

Solving two problems in one go

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

Extensions of the Standard Model (SM) featuring the axion answer two fundamental questions in one go

[Peccei,Quinn `77; Weinberg `78; Wilczek `78]

Solving two problems in one go

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

- Extensions of the Standard Model (SM) featuring the axion answer two fundamental questions in one go:
 - 1. Why do strong interactions conserve CP so accurately?

[Peccei,Quinn `77; Weinberg `78; Wilczek `78]

Solving two problems in one go

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

- Extensions of the Standard Model (SM) featuring the axion answer two fundamental questions in one go:
 - 1. Why do strong interactions conserve CP so accurately?

Theta-term in QCD Lagrangian:

[Belavin et al. `75; 't Hooft 76; Callan et al. `76; Jackiw, Rebbi `76]

$$\mathcal{L}_{\mathrm{QCD}} \supset \overline{\theta} \, \frac{\alpha_s}{8\pi} G^b_{\mu\nu} \tilde{G}^{b,\mu\nu}$$

violates P and T (and thus CP) conservation

[Peccei,Quinn `77; Weinberg `78; Wilczek `78]

Solving two problems in one go

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

- Extensions of the Standard Model (SM) featuring the axion answer two fundamental questions in one go:
 - 1. Why do strong interactions conserve CP so accurately?

Theta-term in QCD Lagrangian:

[Belavin et al. `75;'t Hooft 76;Callan et al. `76;Jackiw,Rebbi `76]

$$\mathcal{L}_{\mathrm{QCD}} \supset \overline{\theta} \, \frac{\alpha_s}{8\pi} G^b_{\mu\nu} \tilde{G}^{b,\mu\nu}$$

- violates P and T (and thus CP) conservation
- leads to electric dipole moment of neutron (nEDM):

[Crewther, Di Vecchia, Veneziano, Witten 79;...; Pospelov, Ritz 00]

$$d_n \sim \frac{m_u m_d}{m_u + m_d} \frac{1}{m_n^2} \,\bar{\theta} \,e \sim 10^{-16} \,\bar{\theta} \,e \,\mathrm{cm}$$

[Peccei,Quinn `77; Weinberg `78; Wilczek `78]

Solving two problems in one go

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

- Extensions of the Standard Model (SM) featuring the axion answer two fundamental questions in one go:
 - 1. Why do strong interactions conserve CP so accurately?

Theta-term in QCD Lagrangian:

[Belavin et al. `75;'t Hooft 76;Callan et al. `76;Jackiw,Rebbi `76]

$$\mathcal{L}_{\mathrm{QCD}} \supset \overline{\theta} \, \frac{\alpha_s}{8\pi} G^b_{\mu\nu} \tilde{G}^{b,\mu\nu}$$

- violates P and T (and thus CP) conservation
- leads to electric dipole moment of neutron (nEDM):

[Crewther, Di Vecchia, Veneziano, Witten 79;...; Pospelov, Ritz 00]

$$d_n \sim \frac{m_u m_d}{m_u + m_d} \frac{1}{m_n^2} \,\bar{\theta} \,e \sim 10^{-16} \,\bar{\theta} \,e \,\mathrm{cm}$$

• Experiment: [Abel et al. 20]

$$|d_n| < 1.8 \times 10^{-26} e \,\mathrm{cm}$$

[Peccei,Quinn `77; Weinberg `78; Wilczek `78]

Solving two problems in one go

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

- Extensions of the Standard Model (SM) featuring the axion answer two fundamental questions in one go:
 - 1. Why do strong interactions conserve CP so accurately?

Theta-term in QCD Lagrangian:

[Belavin et al. `75;'t Hooft 76;Callan et al. `76;Jackiw,Rebbi `76]

$$\mathcal{L}_{\mathrm{QCD}} \supset \overline{\theta} \, \frac{\alpha_s}{8\pi} G^b_{\mu\nu} \tilde{G}^{b,\mu\nu}$$

- violates P and T (and thus CP) conservation
- leads to electric dipole moment of neutron (nEDM):

[Crewther, Di Vecchia, Veneziano, Witten 79;...; Pospelov, Ritz 00]

$$d_n \sim \frac{m_u m_d}{m_u + m_d} \frac{1}{m_n^2} \,\bar{\theta} \,e \sim 10^{-16} \,\bar{\theta} \,e \,\mathrm{cm}$$

• Experiment: [Abel et al. 20]

$$|d_n| < 1.8 \times 10^{-26} e \,\mathrm{cm}$$
 $\Rightarrow |\overline{\theta}| \lesssim 10^{-10}$

[Peccei,Quinn `77; Weinberg `78; Wilczek `78]

Solving two problems in one go

[Preskill, Wise, Wilczek 83; Abbott, Sikivie 83; Dine, Fischler 83,....]

- Extensions of the Standard Model (SM) featuring the axion answer two fundamental questions in one go:
 - 1. Why do strong interactions conserve CP so accurately?
 - 2. What is the nature of dark matter (DM)?

Minimal SM extension solving strong CP problem

[Kim 79;Shifman,Vainshtein,Zakharov 80]

Minimal SM extension solving strong CP problem

[Kim 79;Shifman,Vainshtein,Zakharov 80]

• Add to SM a singlet complex scalar field σ , featuring a spontaneously broken global axial $U(1)_{PQ}$ symmetry, and an exotic quark $\mathcal Q$ charged under it:

$$\mathcal{L} \supset -\lambda_{\sigma} \left(|\sigma|^2 - \frac{v_{\mathrm{PQ}}^2}{2} \right)^2 + y \, \sigma \, \bar{\mathcal{Q}}_L \mathcal{Q}_R$$

[Raffelt]

Minimal SM extension solving strong CP problem

[Kim 79;Shifman, Vainshtein, Zakharov 80]

Add to SM a singlet complex scalar field σ , featuring a spontaneously broken global axial $U(1)_{PQ}$ symmetry, and an exotic quark Q charged under it:

$$\mathcal{L} \supset -\lambda_{\sigma} \left(|\sigma|^2 - \frac{v_{\mathrm{PQ}}^2}{2} \right)^2 + y \, \sigma \, \bar{\mathcal{Q}}_L \mathcal{Q}_R$$

- Features three particles beyond SM:
 - Excitation of angular field a: axion (NG-boson)

 - Excitation of modulus field ρ : $m_{\rho} = \sqrt{2\lambda_{\sigma}}v_{\mathrm{PQ}}$ Exotic quark: $m_{\mathcal{Q}} = \frac{y}{\sqrt{2}}v_{\mathrm{PQ}}$ $\left[\sigma(x) = \frac{1}{\sqrt{2}}\left(v_{\mathrm{PQ}} + \rho(x)\right)\mathrm{e}^{ia(x)/v_{\mathrm{PQ}}}\right]$

$$\sigma(x) = \frac{1}{\sqrt{2}} \left(v_{PQ} + \rho(x) \right) e^{ia(x)/v_{PQ}}$$

[Raffelt]

Minimal SM extension solving strong CP problem

[Kim 79;Shifman, Vainshtein, Zakharov 80]

Add to SM a singlet complex scalar field σ , featuring a spontaneously broken global axial $U(1)_{PQ}$ symmetry, and an exotic quark Q charged under it:

$$\mathcal{L} \supset -\lambda_{\sigma} \left(|\sigma|^2 - \frac{v_{\mathrm{PQ}}^2}{2} \right)^2 + y \, \sigma \, \bar{\mathcal{Q}}_L \mathcal{Q}_R$$

- Features three particles beyond SM:
 - Excitation of angular field a: axion (NG-boson)

 - 2. Excitation of modulus field ρ : $m_{\rho}=\sqrt{2\lambda_{\sigma}}v_{\rm PQ}$ 3. Exotic quark: $m_{\mathcal{Q}}=\frac{y}{\sqrt{2}}v_{\rm PQ}$
- Integrating out the modulus and the exotic quark

[Chadha-Day, Ellis, Marsh, Science Advances 22]

Minimal SM extension solving strong CP problem

[Kim 79; Shifman, Vainshtein, Zakharov 80]

Add to SM a singlet complex scalar field σ , featuring a spontaneously broken global axial $U(1)_{PQ}$ symmetry, and an exotic quark Q charged under it:

$$\mathcal{L} \supset -\lambda_{\sigma} \left(|\sigma|^2 - \frac{v_{\mathrm{PQ}}^2}{2} \right)^2 + y \, \sigma \, \bar{\mathcal{Q}}_L \mathcal{Q}_R$$

- - Excitation of angular field a: axion (NG-boson)
 - 2. Excitation of modulus field ρ : $m_{\rho}=\sqrt{2\lambda_{\sigma}}v_{\rm PQ}$ 3. Exotic quark: $m_{\mathcal{Q}}=\frac{y}{\sqrt{2}}v_{\rm PQ}$
- Integrating out the modulus and the exotic quark, the

dynamics of the axion is described by
$$\mathcal{L}_{\mathrm{eff}} \supset \frac{1}{2} \partial^{\mu} a \, \partial_{\mu} a + \frac{\alpha_s}{8\pi} \frac{a}{v_{\mathrm{PQ}}} G^a_{\mu\nu} \tilde{G}^{a \; \mu\nu}$$

Minimal SM extension solving strong CP problem

[Kim 79;Shifman, Vainshtein, Zakharov 80]

Add to SM a singlet complex scalar field σ , featuring a spontaneously broken global axial $U(1)_{PQ}$ symmetry, and an exotic quark Q charged under it:

$$\mathcal{L} \supset -\lambda_{\sigma} \left(|\sigma|^2 - \frac{v_{\mathrm{PQ}}^2}{2} \right)^2 + y \, \sigma \, \bar{\mathcal{Q}}_L \mathcal{Q}_R$$

- - Excitation of angular field a: axion (NG-boson)

 - 2. Excitation of modulus field ρ : $m_{\rho}=\sqrt{2\lambda_{\sigma}}v_{\rm PQ}$ 3. Exotic quark: $m_{\mathcal{Q}}=\frac{y}{\sqrt{2}}v_{\rm PQ}$
- Integrating out the modulus and the exotic quark, the dynamics of the axion is described by

$$\mathcal{L}_{\text{eff}} \supset \frac{1}{2} \partial^{\mu} a \, \partial_{\mu} a + \frac{\alpha_s}{8\pi} \frac{a}{v_{\text{PQ}}} G^a_{\mu\nu} \tilde{G}^{a \, \mu\nu}$$

 $\overline{ heta}$ -parameter can be eliminated: $a(x) o a(x) - \overline{ heta} \, v_{\mathrm{PQ}}$

Minimal SM extension solving strong CP problem

[Kim 79; Shifman, Vainshtein, Zakharov 80]

Add to SM a singlet complex scalar field σ , featuring a spontaneously broken global axial $U(1)_{PQ}$ symmetry and an exotic quark Q charged under it:

$$\mathcal{L} \supset -\lambda_{\sigma} \left(|\sigma|^2 - \frac{v_{\mathrm{PQ}}^2}{2} \right)^2 + y \, \sigma \, \bar{\mathcal{Q}}_L \mathcal{Q}_R$$

- Features three particles beyond SM:
 - Excitation of angular field a: axion (NG-boson)

 - 2. Excitation of modulus field ρ : $m_{\rho} = \sqrt{2\lambda_{\sigma}}v_{\rm PQ}$ 3. Exotic quark: $m_{\mathcal{Q}} = \frac{y}{\sqrt{2}}v_{\rm PQ}$
- Integrating out the modulus and the exotic quark, the dynamics of the axion is described by

$$\mathcal{L}_{\text{eff}} \supset \frac{1}{2} \partial^{\mu} a \, \partial_{\mu} a + \frac{\alpha_s}{8\pi} \frac{a}{v_{\text{PQ}}} G^a_{\mu\nu} \tilde{G}^{a \, \mu\nu}$$

- $\overline{ heta}$ -parameter can be eliminated: $a(x) o a(x) \overline{ heta} \, v_{
 m PQ}$
- Integrating out gluons (matching to chiral Lagrangian) results in non-trivial effective potential for axion field

Effective axion potential at energies below confinement scale [Di Vecchia, Veneziano `80; Leutwyler, Smilga 92]

$$V(\theta) = m_{\pi}^2 f_{\pi}^2 \left(1 - \frac{\sqrt{1 + z^2 + 2z \cos \theta}}{1 + z} \right)$$

$$z \equiv m_u / m_d \approx 1/2$$

predicts

- $\langle \theta(x) \rangle = 0 \Rightarrow \mathsf{nEDM} \mathsf{vanishes}$
- axion mass:

$$m_a = \frac{\sqrt{V''(0)}}{v_{PQ}} = \frac{\sqrt{z}}{1+z} \frac{m_\pi f_\pi}{v_{PQ}} \approx 6 \ \mu \text{eV} \left(\frac{10^{12} \,\text{GeV}}{v_{PQ}}\right)$$

$$\mathcal{L}\supset -rac{1}{2}m_a^2a^2$$

$$m_a \approx \frac{\sqrt{z}}{1+z} \, \frac{m_\pi \, f_\pi}{f_a}$$

$$\mathcal{L} \supset -\frac{1}{2}m_a^2 a^2 - \frac{i}{2} \frac{eC_{\text{NEDM}}}{f_a} a \overline{\psi}_N \sigma_{\mu\nu} \gamma_5 \psi_N F^{\mu\nu}$$

$$\mathcal{L} \supset -\frac{1}{2}m_a^2 a^2 - \frac{i}{2} \frac{eC_{\text{NEDM}}}{f_a} a \overline{\psi}_N \sigma_{\mu\nu} \gamma_5 \psi_N F^{\mu\nu} + C_{a\gamma} \frac{\alpha}{8\pi} \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$\mathcal{L} \supset -\frac{1}{2}m_a^2a^2 - \frac{i}{2}\frac{eC_{\text{NEDM}}}{f_a}a\overline{\psi}_N\sigma_{\mu\nu}\gamma_5\psi_NF^{\mu\nu} + C_{a\gamma}\frac{\alpha}{8\pi}\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu} + \frac{1}{2}C_{af}\frac{\partial_{\mu}a}{f_a}\overline{\psi}_f\gamma^{\mu}\gamma_5\psi_f$$

Effective field theory below QCD scale

$$\mathcal{L} \supset -\frac{1}{2}m_{a}^{2}a^{2} - \frac{i}{2}\frac{eC_{\text{NEDM}}}{f_{a}}a\overline{\psi}_{N}\sigma_{\mu\nu}\gamma_{5}\psi_{N}F^{\mu\nu} + C_{a\gamma}\frac{\alpha}{8\pi}\frac{a}{f_{a}}F_{\mu\nu}\tilde{F}^{\mu\nu} + \frac{1}{2}C_{af}\frac{\partial_{\mu}a}{f_{a}}\overline{\psi}_{f}\gamma^{\mu}\gamma_{5}\psi_{f}$$

$$a \longrightarrow \gamma$$

$$a \longrightarrow \gamma$$

$$f$$

• Couplings to SM suppressed by powers of axion decay constant $f_a = v_{\rm PQ}/2N_{\mathcal{Q}} \gg v \simeq 246\,{
m GeV}$

$$\mathcal{L} \supset -\frac{1}{2}m_a^2a^2 - \frac{i}{2}\frac{eC_{\text{NEDM}}}{f_a}a\overline{\psi}_N\sigma_{\mu\nu}\gamma_5\psi_N F^{\mu\nu} + C_{a\gamma}\frac{\alpha}{8\pi}\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu} + \frac{1}{2}C_{af}\frac{\partial_{\mu}a}{f_a}\overline{\psi}_f\gamma^{\mu}\gamma_5\psi_f$$

- Couplings to SM suppressed by powers of axion decay constant $f_a = v_{\rm PQ}/2N_{\mathcal{Q}} \gg v \simeq 246\,{
 m GeV}$
- Coupling to photons experimentally most important:

$$g_{a\gamma\gamma} \equiv \frac{\alpha}{2\pi f_a} C_{a\gamma} \simeq 10^{-15} \,\text{GeV}^{-1} \, \left(\frac{10^{12} \,\text{GeV}}{f_a}\right) C_{a\gamma}$$

Effective field theory below QCD scale

$$\mathcal{L} \supset -\frac{1}{2}m_a^2a^2 - \frac{i}{2}\frac{eC_{\text{NEDM}}}{f_a}a\overline{\psi}_N\sigma_{\mu\nu}\gamma_5\psi_N F^{\mu\nu} + C_{a\gamma}\frac{\alpha}{8\pi}\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu} + \frac{1}{2}C_{af}\frac{\partial_{\mu}a}{f_a}\overline{\psi}_f\gamma^{\mu}\gamma_5\psi_f$$

- Couplings to SM suppressed by powers of axion decay constant $f_a = v_{PQ}/2N_Q \gg v \simeq 246\,\mathrm{GeV}$
- Coupling to photons experimentally most important:

$$g_{a\gamma\gamma} \equiv \frac{\alpha}{2\pi f_a} C_{a\gamma} \simeq 10^{-15} \,\text{GeV}^{-1} \, \left(\frac{10^{12} \,\text{GeV}}{f_a}\right) C_{a\gamma}$$

• Wilson coefficient: $C_{a\gamma}=rac{E_{\cal Q}}{N_{\cal Q}}-rac{2}{3}rac{4+z}{1+z}$ [Kaplan 85;Srednicki `85] $z\equiv m_u/m_dpprox 1/2$

$$\mathcal{L} \supset -\frac{1}{2}m_a^2a^2 - \frac{i}{2}\frac{eC_{\text{NEDM}}}{f_a}a\overline{\psi}_N\sigma_{\mu\nu}\gamma_5\psi_N F^{\mu\nu} + C_{a\gamma}\frac{\alpha}{8\pi}\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu} + \frac{1}{2}C_{af}\frac{\partial_{\mu}a}{f_a}\overline{\psi}_f\gamma^{\mu}\gamma_5\psi_f$$

- Couplings to SM suppressed by powers of axion decay constant $f_a = v_{PQ}/2N_Q \gg v \simeq 246\,\mathrm{GeV}$
- Coupling to photons experimentally most important:

$$g_{a\gamma\gamma} \equiv \frac{\alpha}{2\pi f_a} C_{a\gamma} \simeq 10^{-15} \,\text{GeV}^{-1} \, \left(\frac{10^{12} \,\text{GeV}}{f_a}\right) C_{a\gamma}$$

- Wilson coefficient: $C_{a\gamma}=rac{E_{\mathcal{Q}}}{N_{\mathcal{Q}}}-rac{2}{3}rac{4+z}{1+z}$ [Kaplan 85;Srednicki `85] $z\equiv m_u/m_dpprox 1/2$
 - For exotic quark ${\cal Q}$ with electric charge $q_{\cal Q}$: $N_{\cal Q}=1/2,\;E_{\cal Q}=3\,q_{\cal Q}^2$

Electromagnetic coupling

$$g_{a\gamma\gamma} \equiv \frac{\alpha}{2\pi f_a} C_{a\gamma} \simeq \frac{\alpha}{2\pi f_\pi} \frac{m_a}{m_\pi} \frac{1+z}{\sqrt{z}} \left(\frac{E_Q}{N_Q} - \frac{2}{3} \frac{4+z}{1+z} \right)$$

Electromagnetic coupling

$$g_{a\gamma\gamma} \equiv \frac{\alpha}{2\pi f_a} C_{a\gamma} \simeq \frac{\alpha}{2\pi f_\pi} \frac{m_a}{m_\pi} \frac{1+z}{\sqrt{z}} \left(\frac{E_Q}{N_Q} - \frac{2}{3} \frac{4+z}{1+z} \right)$$

 Allowing for more general representations of exotic quark leads to "band" of predictions for photon coupling

[Di Luzio, Mescia, Nardi 16, 18]

Electromagnetic coupling

$$g_{a\gamma\gamma} \equiv \frac{\alpha}{2\pi f_a} C_{a\gamma} \simeq \frac{\alpha}{2\pi f_\pi} \frac{m_a}{m_\pi} \frac{1+z}{\sqrt{z}} \left(\frac{E_Q}{N_Q} - \frac{2}{3} \frac{4+z}{1+z} \right)$$

- Allowing for more general representations of exotic quark leads to "band" of predictions for photon coupling
- What if exotic quark carries a magnetic charge? [Sokolov,AR 21, 22, 23]
 - Its existence would explain not only strong CP conservation, but also charge quantisation [Dirac 1931, Schwinger 1966, Zwanziger 1968]

[Di Luzio,Mescia,Nardi 16, 18]

Electromagnetic coupling

$$g_{a\gamma\gamma} \equiv \frac{\alpha}{2\pi f_a} C_{a\gamma} \simeq \frac{\alpha}{2\pi f_\pi} \frac{m_a}{m_\pi} \frac{1+z}{\sqrt{z}} \left(\frac{E_Q}{N_Q} - \frac{2}{3} \frac{4+z}{1+z} \right)$$

- Allowing for more general representations of exotic quark leads to "band" of predictions for photon coupling
- What if exotic quark carries a magnetic charge? [Sokolov,AR 21, 22, 23]
 - Its existence would explain not only strong CP conservation, but also charge quantisation [Dirac 1931, Schwinger 1966, Zwanziger 1968]
 - Induced photon coupling:

$$g_{a{\rm MM}} \simeq \frac{\alpha_{\rm M}}{2\pi f_{\pi}} \frac{m_a}{m_{\pi}} \frac{1+z}{\sqrt{z}} \frac{M_{\mathcal{Q}}}{N_{\mathcal{Q}}}$$

strongly enhanced due to charge quantisation ($e g_0 = 6\pi n$):

$$\alpha_{\rm M} \equiv \frac{g_0^2}{4\pi} = \frac{9\pi}{e^2} = \frac{9}{4}\alpha^{-1} \quad \Rightarrow \quad \frac{g_{\rm aMM}}{g_{a\gamma\gamma}} = \left(\frac{3\,g_{\mathcal{Q}}}{2\,q_{\mathcal{Q}}}\right)^2 \alpha^{-2} \sim 10^5$$

[Di Luzio, Mescia, Nardi 16, 18]

Standard production mechanisms

Standard production mechanisms

Axion comes to existence as soon as Peccei-Quinn (PQ) symmetry is spontaneously broken

[Peking University]

Standard production mechanisms

- Axion comes to existence as soon as Peccei-Quinn (PQ) symmetry is spontaneously broken
- Dynamics and resulting DM density depends on whether PQ breaking scale $v_{\rm PQ}$ is larger or smaller than the temperature of the universe at the onset of the hot phase, $T_{\rm hot}$

Standard production mechanisms

- Axion comes to existence as soon as Peccei-Quinn (PQ) symmetry is spontaneously broken
- Dynamics and resulting DM density depends on whether PQ breaking scale $v_{\rm PQ}$ is larger or smaller than the temperature of the universe at the onset of the hot phase, $T_{\rm hot}$
 - Scenario A ("pre-inflationary PQ breaking"):
 - axion DM production by realignment mechanism
 [Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]

Standard production mechanisms

- Axion comes to existence as soon as Peccei-Quinn (PQ) symmetry is spontaneously broken
- Dynamics and resulting DM density depends on whether PQ breaking scale $v_{\rm PQ}$ is larger or smaller than the temperature of the universe at the onset of the hot phase, $T_{\rm hot}$
 - Scenario A ("pre-inflationary PQ breaking"):
 - axion DM production by realignment mechanism
 [Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]
 - DM axion mass not fixed by DM abundance:

$$\Omega_a h^2 pprox 0.12 \, \left(rac{6 \; \mu {
m eV}}{m_a}
ight)^{1.165} heta_i^2 \,, \qquad heta_i \equiv a(t_{
m hot})/f_a$$
 [Borsanyi et al. `16]

Standard production mechanisms

- Axion comes to existence as soon as Peccei-Quinn (PQ) symmetry is spontaneously broken
- Dynamics and resulting DM density depends on whether PQ breaking scale $v_{\rm PQ}$ is larger or smaller than the temperature of the universe at the onset of the hot phase, $T_{\rm hot}$
 - Scenario A ("pre-inflationary PQ breaking"):
 - axion DM production by realignment mechanism
 [Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]
 - DM axion mass not fixed by DM abundance:

$$\Omega_a h^2 pprox 0.12 \, \left(rac{6 \, \, \mu \mathrm{eV}}{m_a}
ight)^{1.165} \, heta_i^2 \,, \qquad heta_i \equiv a(t_\mathrm{hot})/f_a$$

- Scenario B ("post-inflationary PQ breaking"):
 - axion DM production by realignment mechanism and decay of topological defects (strings and domain walls)

Standard production mechanisms

- Axion comes to existence as soon as Peccei-Quinn (PQ) symmetry is spontaneously broken
- Dynamics and resulting DM density depends on whether PQ breaking scale $v_{\rm PQ}$ is larger or smaller than the temperature of the universe at the onset of the hot phase, $T_{\rm hot}$
 - Scenario A ("pre-inflationary PQ breaking"):
 - axion DM production by realignment mechanism
 [Preskill,Wise,Wilczek 83; Abbott,Sikivie 83; Dine,Fischler 83,....]
 - DM axion mass not fixed by DM abundance:

$$\Omega_a h^2 \approx 0.12 \left(\frac{6 \ \mu \text{eV}}{m_a}\right)^{1.165} \theta_i^2, \qquad \theta_i \equiv a(t_{\text{hot}})/f_a$$

- Scenario B ("post-inflationary PQ breaking"):
 - axion DM production by realignment mechanism and decay of topological defects (strings and domain walls)
 - required axion mass to explain 100% of DM abundance:

[Hiramatsu et al. 11,12,13; Kawasaki,Saikawa,Segikuchi 15; AR,Saikawa `16; Borsanyi et al. `16; Klaer,Moore `17; Gorghetto,Hardy,Villadoro `18; Buschmann et al. 19; Hindmarsh 19; Gorghetto,Hardy,Villadoro '20; Buschmann et al. 21;Beyer,Sarkar 23;...]

$$m_a \approx 26 \ \mu\text{eV} - 0.5 \ \text{meV}, \text{ for } N_{\text{DW}} = 2N_{\mathcal{Q}} = 1$$

 $m_a \gtrsim \text{meV}, \text{ for } N_{\text{DW}} = 2N_{\mathcal{Q}} > 1$

Axion Dark Matter Experiments

Variety of experimental techniques

Huge possible mass range:

Variety of experimental techniques

 Huge possible mass range requires various experimental techniques to search for axion dark matter via different axion couplings:

Variety of experimental techniques

 Huge possible mass range requires various experimental techniques to search for axion dark matter via different axion couplings:

Enormous number of axion experiments worldwide

Enormous number of axion experiments worldwide

Can only talk about a subset of them ...

Wavy dark matter

- Axion DM experiments rely on the assumption that the dark matter halo of the Milky Way is comprised by axions
- The velocity dispersion of halo dark-matter axions is given by the galactic virial velocity, implying a macroscopic de Broglie wave length,

$$\lambda_{\rm dB} = 2\pi/(m_a v_a) \simeq {\rm km} \, (\mu {\rm eV}/m_a) (10^{-3} \, c/v_a)$$

Correspondingly, halo dark-matter axions behave as an approximately spatially homogeneous and monochromatic classical oscillating field,

$$a(t) \simeq \sqrt{2\rho_a} \cos(m_a t)/m_a$$

When presenting (projected) limits on halo dark-matter axion couplings it is assumed that

$$\rho_a = \rho_{\rm DM}^{\rm halo} \approx 0.45 \, {\rm GeV \, cm^{-3}}$$

$$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

$$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

Microwave cavities

• Concept: In microwave cavity placed in magnetic field, DM axion converts into photon

[Sikivie 83]

$$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

Microwave cavities

• Concept: In microwave cavity placed in magnetic field, DM axion converts into photon

[Sikivie 83]

 If axion mass matches resonance frequency of cavity,

$$m_a = 2\pi\nu_{\rm res} \sim 4\,\mu{\rm eV}\left(\frac{\nu_{\rm res}}{{\rm GHz}}\right)$$

power output

$$P_{\mathrm{out}} \sim g_{a\gamma}^2 \, \rho_{\mathrm{a}} \, B_0^2 \, V \, Q$$

enhanced by quality factor

$$Q \sim 10^5$$

Need to scan by tuning resonance frequency

$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$

Microwave cavities

Currently running:

- ADMX
- CAPP [Sung Woo Youn, DM par. session 2A]
- CAST-CAPP
- GrAHal
- HAYSTAC
- ORGAN
- QUAX
- RADES
- TASEH

ADMX

CAPP

 $\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$

Microwave cavities

Currently running:

- **ADMX**
- **CAPP** [Sung Woo Youn, DM par. session 2A]
- **CAST-CAPP**
- **GrAHal**
- HAYSTAC
- **ORGAN**
- **QUAX**
- **RADES**
- **TASEH**

 $\mathcal{L} \supset \frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} a \mathbf{E} \cdot \mathbf{B}$

MWD

 10^{-10}

CAST

MWD

[https://github.com/cajohare/AxionLimits]

GHz

Microwave cavities

- Currently running:
 - **ADMX**
 - CAPP [Sung Woo Youn, DM par. session 2A]
 - **CAST-CAPP**
 - **GrAHal**
 - HAYSTAC
 - **ORGAN**
 - **QUAX**
 - **RADES**
 - **TASEH**
- More experiments proposed
- Within next decade, microwave cavities will dig deep into vanilla axion band in mass range

 $3a^{10-11}$ RBF+UF **TOORAD** Pulsars 10^{-12} **LAMPOS**7 **ADMX** 10^{-13} 10^{-14} 10^{-15} 10^{-16} *Haloscope bounds shown assume axion to be 100% of DM. In general, scale as $\sqrt{\rho_{\rm DM}/\rho_a}$ 10^{-17} 10^{-5} 10^{-4} m_a [eV]

THz

BabyIAXO

$$\mu eV \lesssim m_a \lesssim 100 \,\mu eV$$

Globular clusters

$$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

Dish antennas

Dish antenna concept:

[Horns, Jaeckel, Lindner, Lobanov, Redondo, AR 13]

 Oscillating axion DM in a background magnetic field carries a small electric field component,

$$\vec{E}_a(t) = -g_{a\gamma}\vec{B}a(t)$$

• Metallic mirror placed in a magnet field pointing parallel to the mirror surface will emit a nearly monochromatic EM wave perpendicular to the mirror surface with a frequency $\nu=m_a/(2\pi)$ and a cycle-averaged power per unit area:

$$\mathcal{P}/\mathcal{A} \simeq 10^{-27} \frac{\text{W}}{\text{m}^2} \left(\frac{g_{a\gamma\gamma}}{10^{-14} \,\text{GeV}^{-1}} \right)^2 \left(\frac{10^{-4} \,\text{eV}}{m_a} \right)^2 \left(\frac{B}{10 \,\text{T}} \right)^2$$

Broadband! No tuning necessary!

 $\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$

Dish antennas

BRASS @ U Hamburg

 Plane permanently magnetized conversion panel

$$B = 0.8 \,\mathrm{T}$$
$$A = 4.7 \,\mathrm{m}^2$$

BRASS

Spherical reflector

[Bajjali et al., `23]

 Cylindric parabolic conversion panel allows use of solenoidal magnetic field

$$B \sim 10 \, \mathrm{T}$$

$$\mathcal{A} \sim 10\,\mathrm{m}^2$$

[Liu et al., 22]

$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$

Dish antennas

BRASS @ U Hamburg

BREAD @ Fermilab

$$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

Dish antennas

- Boosted dish antenna aka open dielectric resonator concept:
 - Add stack of dielectric disks with $\sim \lambda/2$ spacing in front of mirror (all immersed in magnetic field) [Jaeckel,Redondo 13]
 - Constructive interference of photon part of wave function

[Millar, Raffelt, Redondo, Steffen 16]

[Baryakhtar, Huang, Lasenby 18]

[Caldwell et al. `16]

$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$

Dish antennas

MADMAX @ DESY [Juan Maldonado, poster session A]
[Juan Maldonado, DM parallel session 8B]

Conceptional design [Bruns et al. 19]

- 10 T magnet
- Large number of adjustable dielectric disks
 - Tunable frequency and bandwidth

$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$

Dish antennas

MADMAX @ DESY [Juan Maldonado, poster session A]
[Juan Maldonado, DM parallel session 8B]

- Conceptional design [Bruns et al. 19]
 - 10 T magnet
 - Large number of adjustable dielectric disks
 - Tunable frequency and bandwidth
- Prototype tests and science runs exploiting MORPURGO magnet at CERN are going on
- New prototype magnet could allow further exploration of so far unexplored parameter range

 $\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$

Dish antennas

MADMAX @ DESY

Conceptional design [Bruns et al. 19]

- 10 T magnet
- Large number of adjustable dielectric disks
 - Tunable frequency and bandwidth
- Prototype tests and science runs exploiting MORPURGO magnet at CERN are going on
- New prototype magnet could allow further exploration of so far unexplored parameter range
- Full MADMAX expected to start data taking in 2030

$$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

Plasma haloscope

Plasma haloscope concept:

[Lawson, Millar, Pancaldi, Vitagliano, Wilczek, 19]

 In a magnetized plasma, oscillating axion DM induces plasmon excitations,

$$\mathbf{E} = -g_{a\gamma}\mathbf{B}_{e}a\left(1 - \frac{\omega_{p}^{2}}{\omega_{a}^{2} - i\omega_{a}\Gamma}\right)^{-1}$$

 resonant enhancement, when plasma frequency matches axion mass,

$$\omega_p = \omega_a \approx m_a$$

limited by losses (□)

$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$

Plasma haloscope

Plasma haloscope concept:

[Lawson, Millar, Pancaldi, Vitagliano, Wilczek, 19]

 In a magnetized plasma, oscillating axion DM induces plasmon excitations,

$$\mathbf{E} = -g_{a\gamma}\mathbf{B}_{e}a\left(1 - \frac{\omega_{p}^{2}}{\omega_{a}^{2} - i\omega_{a}\Gamma}\right)^{-1}$$

 resonant enhancement, when plasma frequency matches axion mass,

$$\omega_p = \omega_a \approx m_a$$

- limited by losses (Γ)
- A plasma with tunable plasma frequency in the GHz range can be realised by a wire array with variable interwire spacing ("wire metamaterial")

adapted from [Dunne, LBNL Instr. Sem. Feb 22]

 $\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$

Plasma haloscope

ALPHA @ Oakridge

- Goal: building tunable, cryogenic plasma haloscope
- ALPHA Pathfinder
 - 20 cm bore 8T solenoid
 - several wire material prototypes constructed
 - tuning with low power piezoelectric translation
 - sensitive to mass range around 10–20 GHz
 - data run expected ~2026

[Dunne, LBNL Instr. Sem. Feb 22]

 $\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$

Plasma haloscope

ALPHA @ Oakridge

- Goal: building tunable, cryogenic plasma haloscope
- ALPHA Pathfinder
 - 20 cm bore 8T solenoid
 - several wire material prototypes constructed
 - tuning with low power piezoelectric translation
 - sensitive to mass range around 10–20 GHz
 - data run expected ~2026
- Full ALPHA designed to dig deep into axion band

$$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

Lumped-element detectors

[Sikivie, Sullivan, Tanner 14; Kahn, Safdi, Thaler `16]

Concept:

- Toroidal (solenoidal) magnet with fixed field B₀:
 - Axion DM generates oscillating effective current
 J_{eff} parallel to B₀
 - ... generating oscillating magnetic flux B_a through center (azimuthal magnetic flux)
 - ... which can be read out by pickup structure

$$\mathbf{J}_{eff} = g_{a\gamma\gamma} \sqrt{2\rho_{DM}} \cos(m_a t) \mathbf{B}$$

[Salemi '21]

$$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

Lumped-element detectors

Pilot experiments:

ABRACADABRA [Ouellet et al. 19]

ADMX SLIC [Crisosto et al. 20]

• SHAFT [Gramolin et al. 21]

[Salemi '21]

 $\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$

Lumped-element detectors

- Pilot experiments:
 - ABRACADABRA [Ouellet et al. 19]
 - ADMX SLIC [Crisosto et al. 20]
 - SHAFT [Gramolin et al. 21]
- Next generation soon at start:
 - WISPLC [Zhang, Horns, Ghosh 22]

WISPLC

 $\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$

Lumped-element detectors

- Pilot experiments:
 - ABRACADABRA [Ouellet et al. 19]
 - ADMX SLIC [Crisosto et al. 20]
 - SHAFT [Gramolin et al. 21]
- Next generation soon at start:
 - WISPLC [Zhang, Horns, Ghosh 22]
 - DMRadio

[Chiara Salemi, DM par. session 2A] [Jessica Fry, DM par. session 2A] [Nicholas Rapidis, DM par. session 2A]

- DMRadio-50L
- DMRadio-m³
- DMRadio-GUT

$$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

Lumped-element detectors

- Pilot experiments:
 - ABRACADABRA [Ouellet et al. 19]
 - ADMX SLIC [Crisosto et al. 20]
 - SHAFT [Gramolin et al. 21]
- Next generation soon at start:
 - WISPLC [Zhang, Horns, Ghosh 22]
 - DMRadio

[Chiara Salemi, DM par. session 2A] [Jessica Fry, DM par. session 2A] [Nicholas Rapidis, DM par. session 2A]

- DMRadio-50L
- DMRadio-m³
- DMRadio-GUT
- Digging deep into unexplored territory at low mass

scale as $\sqrt{\rho_{\rm DM}/\rho_a}$

$$\mathcal{L} \supset \frac{g_{a\gamma}}{4} \, a \, F_{\mu\nu} \tilde{F}^{\mu\nu} \equiv g_{a\gamma} \, a \, \mathbf{E} \cdot \mathbf{B}$$

Lumped-element detectors

Lumped-element detectors can also probe the new couplings of the monopole-philic axion:

*Haloscope bounds shown assume adapted from [Li,Zhang,Dai, 2211.06847] axion to be 100% of DM. In general, scale as $\sqrt{\rho_{\rm DM}/\rho_a}$

[Tobar, Sokolov, AR, Goryaev, 2306.13320]

 $\text{NMR Experiments} \qquad \mathcal{L} \supset -\frac{i}{2} \frac{e C_{\text{NEDM}}}{f_a} \, a \, \overline{\psi}_N \sigma_{\mu\nu} \gamma_5 \psi_N F^{\mu\nu} \equiv -\frac{i}{2} g_{aN\gamma} \, a \, \overline{\psi}_N \sigma_{\mu\nu} \gamma_5 \psi_N F^{\mu\nu}$

Searches for oscillating NEDMs

NMR Experiments $\mathcal{L} \supset -\frac{i}{2} \frac{e C_{\mathrm{NEDM}}}{f_{z}} a \overline{\psi}_{N} \sigma_{\mu\nu} \gamma_{5} \psi_{N} F^{\mu\nu} \equiv -\frac{i}{2} g_{aN\gamma} a \overline{\psi}_{N} \sigma_{\mu\nu} \gamma_{5} \psi_{N} F^{\mu\nu}$

Searches for oscillating NEDMs

Concept:

Axion DM field induces oscillating NEDMs:

$$d_N(t) = g_{aN\gamma} \sqrt{2\rho_a} \cos(m_a t) / m_a$$

- Place a ferroelectric crystal (permanent electric polarisation fields \vec{E}^*) in external $\vec{B}_{\mathrm{ext}} \perp E^*$
- Nuclear spins are polarised along $\vec{B}_{\rm ext}$ and precess at Larmor frequency $\omega_L = 2\mu_N B_{\rm ext}$
- Interaction $\epsilon_S \vec{d}_N(t) \cdot \vec{E}^*$ of DM induced NEDM with the \vec{E}^* -field leads to resonant increase of transverse magnetisation of sample when $\omega_L=m_a$

[Graham, Rajendran 13; Budker et al. 14]

[Budker et al. 14]

NMR Experiments

Searches for oscillating NEDMs

- CASPEr-Electric in Boston
 - Initial pathfinder experiment deep in the excluded region

[Aybas et al., 2101.01241]

NMR Experiments

Searches for oscillating NEDMs

- CASPEr-Electric in Boston
 - Initial pathfinder experiment deep in the excluded region

[Aybas et al., 2101.01241]

- Full experiment probes axion dark matter in mass range predicted by GUTs
- For nEDM bounds see poster session

[Jacek Zejma, poster session A]

$$\mathcal{L} \supset -\frac{i}{2} \frac{eC_{\text{NEDM}}}{f_a} a \overline{\psi}_N \sigma_{\mu\nu} \gamma_5 \psi_N F^{\mu\nu} \equiv -\frac{i}{2} g_{aN\gamma} a \overline{\psi}_N \sigma_{\mu\nu} \gamma_5 \psi_N F^{\mu\nu}$$

Further axion experiments

- So far only discussed experiments searching for halo DM axions
- Further experiments not relying on galactic halo being the source of axions:
 - Light-shining through walls: [Anselm 85; van Bibber 87]

• Helioscopes: [Sikivie 83]

Further axion experiments

- So far only discussed experiments searching for halo DM axions
- Further experiments not relying on galactic halo being the source of axions:
 - Light-shining through walls: [Anselm 85; van Bibber 87]

• Helioscopes: [Sikivie 83]

ALPS II @ DESY: data taking started in May 2023

Further axion experiments

- So far only discussed experiments searching for halo DM axions
- Further experiments not relying on galactic halo being the source of axions:
 - Light-shining through walls: [Anselm 85; van Bibber 87]

Helioscopes: [Sikivie 83]

ALPS II @ DESY: data taking started in May 2023

BabylAXO @ DESY: start data taking in 2028

Further axion experiments

- So far only discussed experiments searching for halo DM axions
- Further experiments not relying on galactic halo being the source of axions:
 - Light-shining through walls: [Anselm 85; van Bibber 87]

• Helioscopes: [Sikivie 83]

Searches for High-Frequency Gravitational Waves

Axion haloscopes, LSW experiments, and helioscopes as HF-GW detectors

[Ejlli et al., 1908.00232]

[AR et al., 2011.04731]

[Berlin et al., 2112.11465]

[Domcke et al., 2202.00695]

Summary

World-wide big experimental activity on axion searches exploiting different techniques and couplings:

• Many new experimental techniques developed ... often in very tight collaborations between phenomenologically oriented theorists and theoretically interested experimentalists

Stay tuned!