

Measurement of a superconducting qubit in a deep underground laboratory

Francesco De Dominicis, Laura Cardani, Nicola Casali, Ivan Colantoni, Angelo Cruciani, Nicolas Gosling, Ambra Mariani, Stefano Pirro, Ioan M. Pop, Martin Spiecker and Nicolas Zapata

Superconducting qubits

- Quantum counterpart of classical bit;
- Possibility to have superposition states $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle;$
- Any two-level quantum system can be operated as a qubit;

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

Superconducting qubits

- Superconducting circuit with a Josephson Junction;
- The Josephson Junction acts as a non-linear inductor that produces an anharmonic energy spectrum;
- The anharmonic energy spectrum allows us to populate only the first two energy levels, operating the circuit as an effective qubit.

RESONATOR

QUBIT

Blais et al., Rev. Mod. Phys **93**, 025005 (2021)

Qubit coherence

- Interactions with the environment make the qubit state change unpredictably;
- When they occur the information stored by the qubit is lost;
- This phenomenon is called decoherence;

Krantz et al., *Appl. Phys. Rev.* **6**, 021318 (2019)

Qubits and radioactivity

McEwen et al., *Nat. Phys.* **18**, 107-111 (2022)

- Radioactivity was first proposed as a limit for superconducting qubits coherence in 2018 (DEMETRA project, INFN);
- Incident particles can deposit energy in the qubit substrate, producing charges and phonons;
- Phonons break Cooper pairs and produce quasiparticles;
- Quasiparticles can be responsible for the loss of coherence.

Recent results

McEwen et al., Nat. Phys. 18, 107-111 (2022)

- Radioactivity affects the performances of superconducting quantum circuits [Cardani et al., Nature Communications (2021)];
- Radioactivity will limit the coherence time of next-generation qubits [Vepsäiläinen et al., *Nature* (2020)];
- Radioactivity is a source of correlated errors in multi-qubit chips [Wilen et al., Nature (2021), McEwen et al., Nature Physics (2022)].

Radioactive sources

Two categories of radioactive sources:

Far sources

- Environmental gammas (measured);
- Cosmic muons (literature);
- Neutrons (measured);

Close sources

• Contaminations (measured).

Cardani et al., *Eur. Phys. J. C* **83**, 94 (2023)

Simulations

Cardani et al., *Eur. Phys. J. C* **83**, 94 (2023)

- Experimental setup reconstructed in a Geant4 simulation;
- For the far sources we generated particles around the cryostat with the given energy and angular distributions;
- For close sources we simulated radioactive decays in the setup components;
- Contributions estimated from the fraction of simulated events with interactions in the chip.

Simulations

- Greatest contributions in a "standard" laboratory from far sources;
- Contributions from close sources depending on the materials used to make the chip and the other elements of the setup;

Source	Contribution (mHz)	
Lab γ-rays	(18 ± 4)	
Muons	(10 ± 0.6)	
Neutrons	(0.15 ± 0.05)	
Close sources	< 5	

Cardani et al., Eur. Phys. J. C 83, 94 (2023)

Going underground

Workman et al., Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

- Mitigation strategies developed for particle physics experiments can also be used in qubit experiments;
- Contribution from cosmic muons can be abated by moving the experiment to an underground laboratory;
- In the LNGS underground laboratories the muon interaction rate is attenuated by a factor 10⁶;

Going underground

- The LNGS underground laboratories also have a lower gamma background compared to other above ground laboratories;
- Measurements with a NaI crystal showed that, by shielding the cryostat with 10 cm of lead, the gamma interaction rate is attenuated further by a factor 8.

Cardani et al., *Nat. Commun.* **12**, 2733 (2021)

Shielding

Expected contributions

- In our setup the total rate of interaction is expected to drop from tens of mHz to less than 1 mHz;
- Better attenuations are achievable by improving the shielding.

Source	Contributions Above Ground (mHz)	Contributions at LNGS (mHz)
Lab γ-rays	(18 ± 4)	< 1
Muons	(10 ± 0.6)	< 10-5
Neutrons	(0.15 ± 0.05)	< 10-4

The IETI Underground Facility

- Hall C of LNGS Underground Laboratories;
- Pulse Tube based ³He/⁴He dilution refrigerator;
- Pulse Tube decoupling plus custom made 3 stage mechanical decoupling system between cold plates and detectors;
- 3 cm internal lead at 4K +
 additional 3 cm lead at 10 mK;

https://ieti.sites.lngs.infn.it/index.html

The fluxonium qubit

- Measurements in collaboration with the Karlsruhe Institute of Technology, that produced the qubit studied;
- Fluxonium qubit: superconducting ring interrupted by a Josephson Junctions and shunted by a large inductance;
- Two Josephson Junctions to make it flux-tunable;
- The qubit is coupled to a resonator for state readout;

Gusenkova et at., Phys. Rev. Applied 15, 064030 (2021)

State measurement

- The resonance frequency of the resonator depends on the qubit state;
- The qubit state is then measured by sending a pulse at the resonance frequency of the resonator and by measuring the output signal.

Gusenkova et at., *Phys. Rev. Applied* **15**, 064030 (2021)

Signal amplification

- Readout signals can induce state transitions in the qubit, reducing the measurement fidelity;
- Because of that, weak and short pulses are needed;
- The output signal, though, could be overwhelmed by noise when measured;
- A solution is using amplifiers with near-quantum-limited noise;

The DJJAA

Winkel et al., *Phys. Rev. Applied* **13**, 024015 (2020)

- Parametric amplifier developed at the Karlsruhe Institute of Technology;
- Made by hundreds of Josephson Junctions;
- Flux-tunable resonance frequency;
- Amplifier allows to send less photons to the resonator to read the qubit state, resulting in:
 - Shorter readout time;
 - Lower power of the readout signal.

Measurement Strategy

- In our measurements we focused on the estimation of the *energy-relaxation time* of the qubit (time for the qubit to relax from the first excited state to the ground state);
- To infer possible effects of radioactivity on qubit behavior a Thorium source was also used;
- In the experiment readout signals were sent with high frequency to measure the qubit state;
- From the traces quantum jumps frequencies were calculated and used to estimate the energy-relaxation time;

Results

- Three long measurements (~ few hours) on the qubit: with the full shielding, without the lead and copper shielding and with a thorium source next to the cryostat;
- No evidence of direct effects of radioactivity on T_1 .

Results

- Short measurements
 (~ 30 minutes)
 adding and
 removing a Thorium
 source;
- Fluctuations in T_1 values are uncorrelated with the presence of the source;

Results

- Measurements in a low-radioactivity environment confirmed the result obtained by Vepsäläinen et al. that radioactivity is not a major limit for qubit with energy-relaxation times of tens of µs;
- This can be explained by the small rate of interactions from radioactivity compared to the average decay rate of the qubit;
- Nonetheless, qubit performances are improving fast and chip dimensions are increasing to store more qubits, so bigger effects are expected to be observed in new devices.

Prospects

- New experiments in preparation within the SQMS collaboration;
- In the near future characterization of a new transmon qubit featuring a Tantalum coating, with energy-relaxation time of hundreds of µs [Bal et al., arXiv:2304.13257 (2023)];

Prospects

• In the long term test and characterization of the future SQMS prototypes, aiming at energy-relaxation times of milliseconds.

 The facility is also open for new collaborations! :)

Conclusions

- We developed a fully operational underground facility for superconducting qubit experiments in a low radioactivity environment;
- Measurements done during this year proved that radioactivity does not have a direct influence on qubits with energy-relaxation time of tens of μs;
- New measurements with qubits with energy-relaxation time of hundreds of µs and more coming soon!

CONTACTS

Francesco De Dominicis (speaker): <u>francesco.dedominicis@gssi.it</u>

Laura Cardani (head of the group): laura.cardani@roma1.infn.it

Conclusions

ACKNOWLEDGEMENTS

This work was supported in part by the Italian Ministry of Foreign Affairs and International Cooperation, grant number US23GR09

CONTACTS

Francesco De Dominicis (speaker): <u>francesco.dedominicis@gssi.it</u>

Laura Cardani (head of the group): laura.cardani@roma1.infn.it

Backup: the IETI Cryostat

 Experimental volume: 25 cm of diameter, 16 cm height;

- 12 electronic channels with low noise voltage preamplifiers (2 nV/ √Hz) (R&D CUPID);
- 3 Magnicon SQUIDS (R&D COSINUS);
- 8 low attenuation SMA coax cables from room temperature to 3 K plus 8 NbTi Superconductive coax cables from 3 K to MC (R&D DEMETRA/SQMS);
- 48 twisted superconductive wires from room temperature to MC;
- A 60Co crystal for absolute thermometry calibration.

Backup: RF lines

