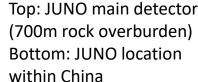


The JUNO pre-detector **OSIRIS**

Tobias Sterr Eberhard Karls Universität Tübingen Johannes Gutenberg Universität Mainz Prisma Cluster of Excellence TAUP Conference 2023 - Vienna

Jiangmen Underground Neutrino Observatory



- JUNO

- JUNO is a medium baseline reactor neutrino experiment located in southern China
- JUNOs main goal is the determination of the neutrino mass hierarchy
 - Several other physics goals, e.g., solar neutrinos, geo neutrinos, supernova neutrinos, etc.
- The JUNO detector will feature 20 kt of liquid scintillator in spherical acrylic vessel as well as 45000 PMTs (20" and 3")

Daya Bay

Motivation – Why OSIRIS?

- OSIRIS Online Scintillator Internal Radioactivity Investigation System
 - > Radiopure detector materials are necessary to achieve sensitivity goals of JUNO
 - ➤ This leads to the radiopurity requirements set for JUNO:

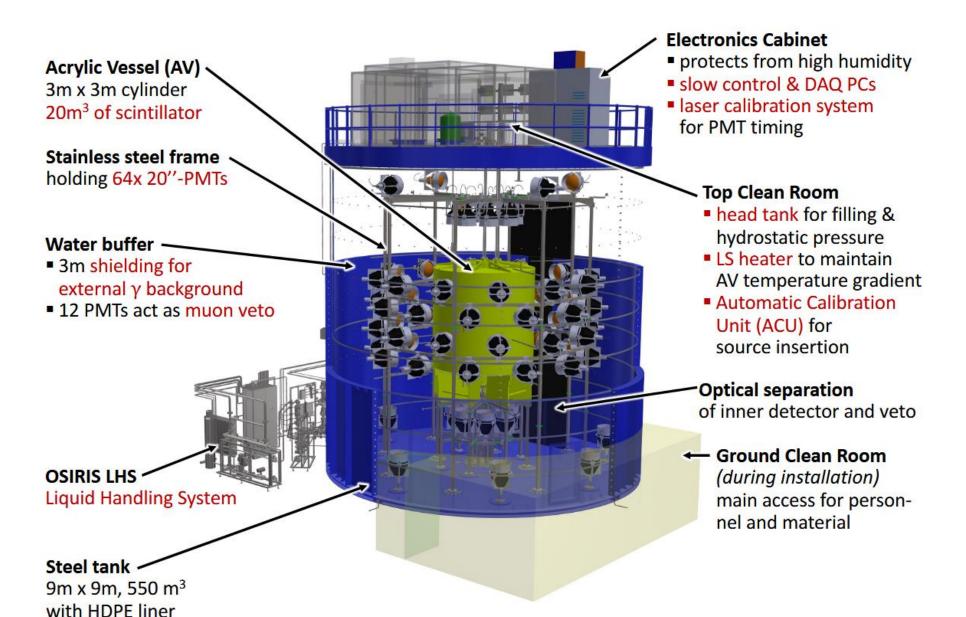
Radiopurity requirements of JUNO in comparison of achieved levels of other experiments

Experiment Isotope	JUNO IBD $[rac{g}{g}]$	JUNO solar $[rac{g}{g}]$	KamLAND $[rac{g}{g}]$	Borexino $[rac{g}{g}]$
²³⁸ U	1 x 10 ⁻¹⁵	1 x 10 ⁻¹⁶	(5.0±0.2) x 10 ⁻¹⁸	< 1 x 10 ⁻¹⁸
²³² Th	1 x 10 ⁻¹⁵	1 x 10 ⁻¹⁶	(1.3±0.1) x 10 ⁻¹⁷	< 1 x 10 ⁻¹⁸
²¹⁰ Po	-	5 x 10 ⁻²⁴	~2 x 10 ⁻²³	< 1 x 10 ⁻²⁵
⁴⁰ K	1 x 10 ⁻¹⁶	1 x 10 ⁻¹⁷	(7.3±1.2) x 10 ⁻¹⁷	< 1 x 10 ⁻¹⁹
¹⁴ C	1 x 10 ⁻¹⁷	1 x 10 ⁻¹⁷	-	(2.7±0.1) x 10 ⁻¹⁸

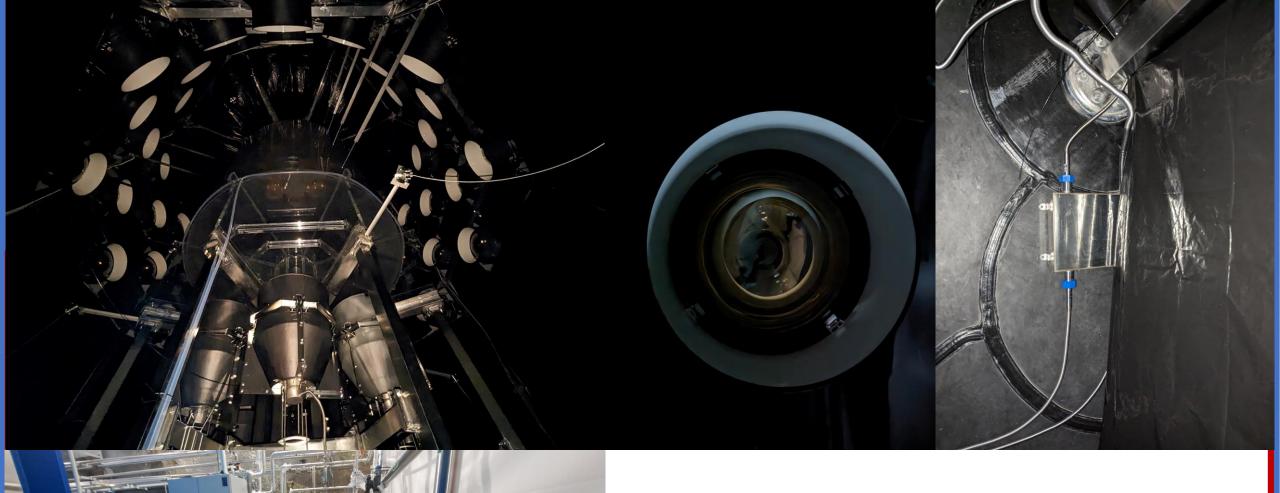
➤ Marked in red is the main focus of OSIRIS

Motivation – Why OSIRIS?

- Motivation: Radioactivity Limit
 - > Reactor antineutrinos:
 - 210 Po: Mimics inverse beta decay coincidence via 13 C(α ,n) 16 O reactions
 - 14C: pile-up with prompt events will distort both energy scale and resolution


➤ Solar neutrinos:

- 238 U/ 232 Th: α and β decays will create additional background for elastic scattering on electrons
- ⁴⁰K: β-decays not connected to or out of equilibrium with U/Th chains



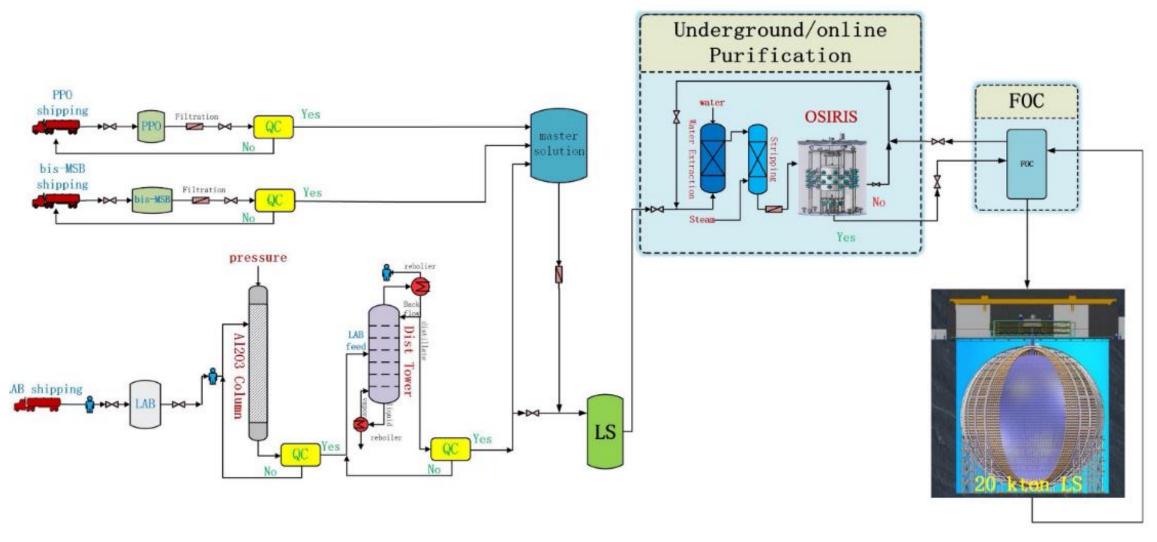
The OSIRIS Detector

Picture by JGU Mainz Group

Top Left: Inner Volume of OSIRIS with acrylic vessel

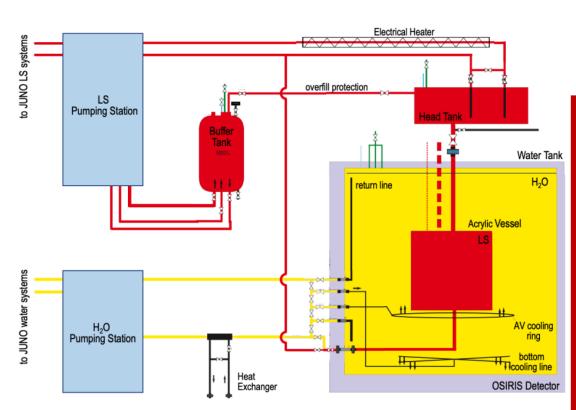
Top Middle: PMT with shielding

Top Right: General control unit (GCU) of the PMTs


Bottom Left: Liquid handling system during construction

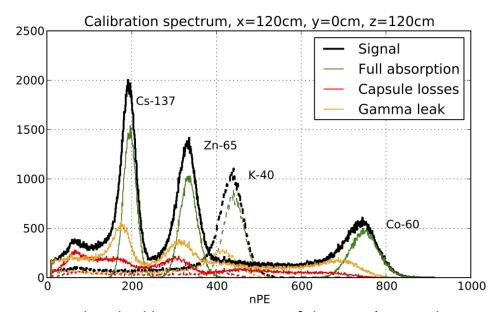
Pictures by Cornelius Vollbrecht and Tobias Sterr

The OSIRIS Detector



The OSIRIS Detector

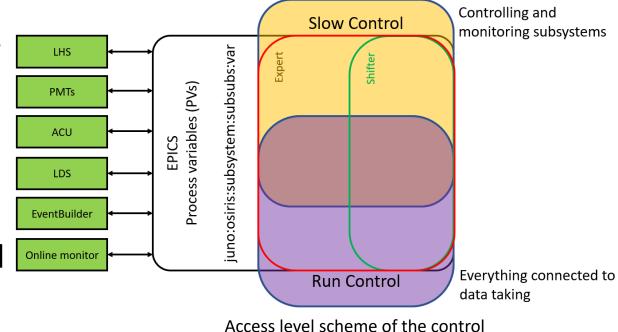
- Production and purification of liquid scintillator (LS) is performed on-site
- OSIRIS will be the last station in the LS system prior to the filling in the main detector
- Main goals of OSIRIS:
 - Support of the commissioning of the whole LS chain, including optimization of U/Th contents
 - ➤ Monitoring of the LS radiopurity during the six months long filling of the JUNO main detector
- Two possible operation modes:
 - ➤ Batch mode: Monitoring of one batch of LS for several days/weeks
 - ➤ Continuous mode: LS will constantly be filled into OSIRIS and traverse it within a day


Simplified scheme of liquid handling system of OSIRIS. (DOI 10.1088/1742-6596/2156/1/012198)

Calibration Systems

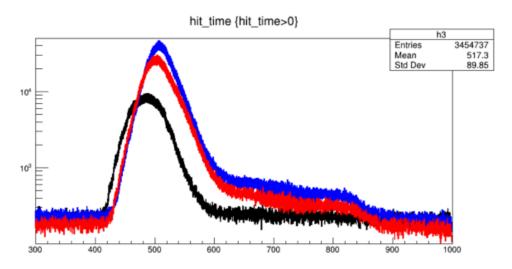
- OSIRIS features two independent calibration systems
 - ➤ Automated Calibration Unit (ACU) inherited from Daya Bay
 - ➤ A laser calibration system developed for OSIRIS
- ACU features three calibration sources
 - ➤ Low activity ⁴⁰K source will be used for long term monitoring
 - ➢ High activity source consisting of ¹³⁷CS, ⁶⁵Zn and ⁶⁰Co − Vertex calibration
 - ➤ Pulsed 410nm LED Timing and charge calibration
- Laser system features 24 diffused light injection points distributed in the detector
 - Laser 420nm, ~80ps pulse width (FHWM)

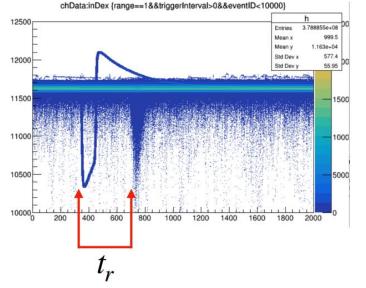
Simulated calibration spectrum of the ACU (40K and high activity source combined).


Laser diffuser capsule

Event Building and DAQ

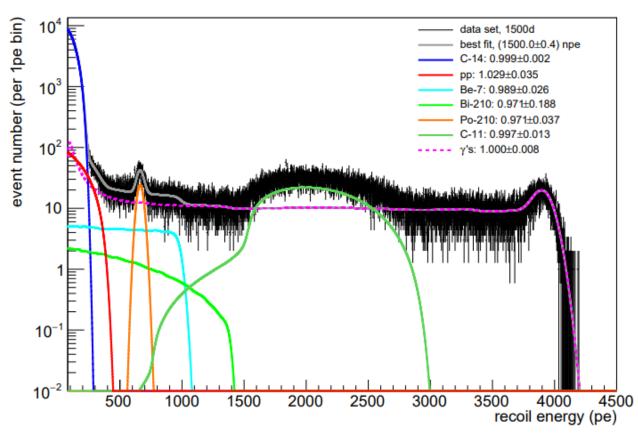
- Two step DAQ software:
 - 1. Event builder: Sorting and clustering PMT inputs into events
 - 2. Root sorter: Building root-trees of the data, minor online analysis
- DAQ features different modes:
 - ➤ Standard physics mode
 - ➤ Calibration mode (external trigger)
- Run and slow control of OSIRIS based on the Experimental Physics and Industrial Control System (EPICS)


systems of OSIRIS. Image by Kai Loo.



- First data of air runs is available
- Analysis of several detector parameters ongoing:
 - Run time measurements of the calibration systems
 - Majority trigger studies
 - Dark count threshold studies
 - Hit time studies
 - Etc.
- Final comprehensive calibration of the detector will be done after filling

Top: Hit time study of the detector with a glass bulb filled with liquid scintillator in different heights (red and blue) vs natural radio activity (black). Left: Raw waveforms together with the trigger of the optical calibration systems. Marked is the run time between trigger and pulse at GCU.



Future OSIRIS Physics Program

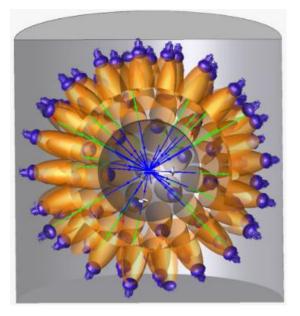
- Solar proton-proton (pp) neutrinos from basic reactions of hydrogen burning
 - Hard to access because of low end point energy (but precise values given from theory)
 - Borexino pp neutrino result: ± 10%
 OSIRIS goal: high precision of view %
 - OSIRIS upgrade could outperform JUNO and Borexino
 - Lower background and pile-up levels (¹⁴C)
 - Better energy resolution
 - Possibility to use integrated directionality (CID)

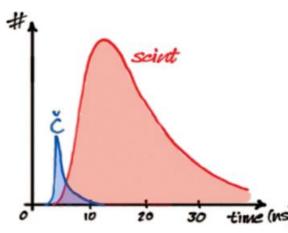
See Poster #266 by Kai Loo

Energy spectrum and spectral fit for the proposed future pp neutrino search of OSIRIS.

(DOI 10.1140/epjc/s10052-022-10725-y)

Future OSIRIS Physics Program


- Observation of 0vββ decays:
 - JUNO plans a multi-ton 2β -phase after the completion of the mass hierarchy phase
 - OSIRIS could work as a prototype to:
 - Test Te/Xe-loaded LS prepared for JUNO
 - Develop new reco techniques e.g., particle ID based on Cherenkov/scintillation ratio
 - Perform very sensitive $2\beta^+$ decay measurements with 78 Kr/ 124 Xe-loaded slow scintillators



Potential OSIRIS Detector Upgrade

- Both possible programs lead to similar requirements:
 - Improved background levels:
 - Additional shielding from external radioactivity (concrete/steel for ~1 m.w.e. + use of a nylon balloon)
 - Enhanced light collection:
 - Increase number of 20" PMTs from 76 to 132, add light concentrator (e.g., Winston cone, BooCone, etc.)
 - Increase 280 p.e./MeV → 1.500 2.000 p.e./MeV
 - Novel techniques for background discrimination:
 - Use Slow scintillator
 - Adjust/develop techniques for pp-directionality (CID) as well as scintillation/Cherenkov separation (ββ)

Top: OSIRIS with increase PMT count, nylon balloon and Winston cones Bottom:
Scintillation/Cherenkov separation using slow scintillator (Plot and picture by M.Wurm)

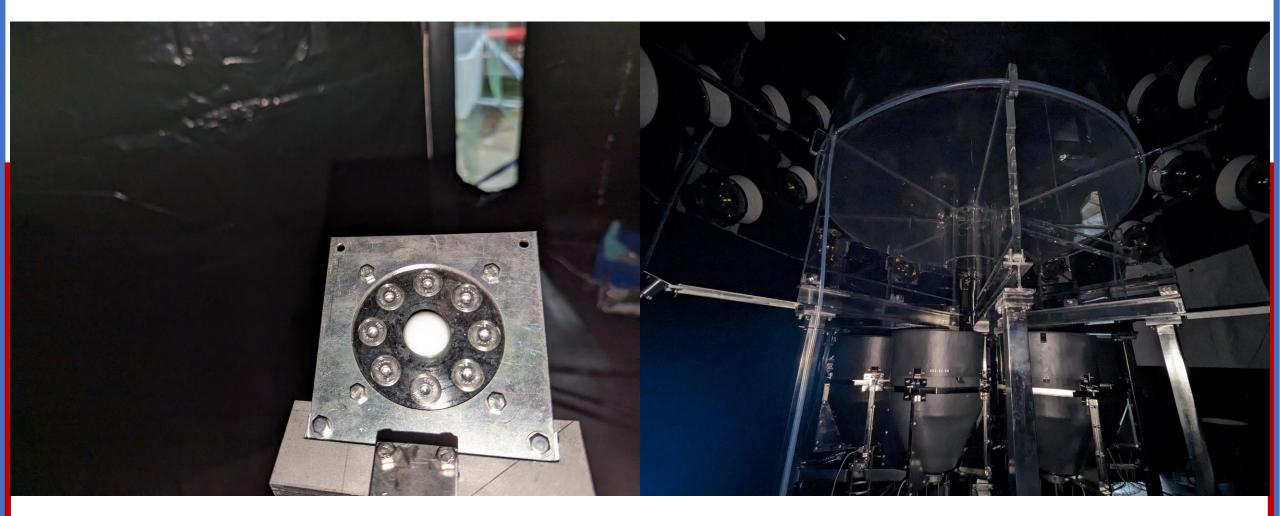
Conclusion

- OSIRIS is a JUNO pre-detector designed to monitor the radiopurity of the liquid scintillator during the filling phase of JUNO
 - ➤ 18t capacity
 - >76 20" PMTs
 - ➤ Sensitivity goal 10⁻¹⁵/10⁻¹⁶ g/g of Uranium and Thorium
- OSIRIS is the last step in the whole LS chain of JUNO and crucial to the quality control during filling of the JUNO main detector
- First Air run data is available
- Joint commissioning of the whole LS chain of JUNO planned to start in autumn
- Additional physics program and possible extension of the detector after the filling phase of JUNO

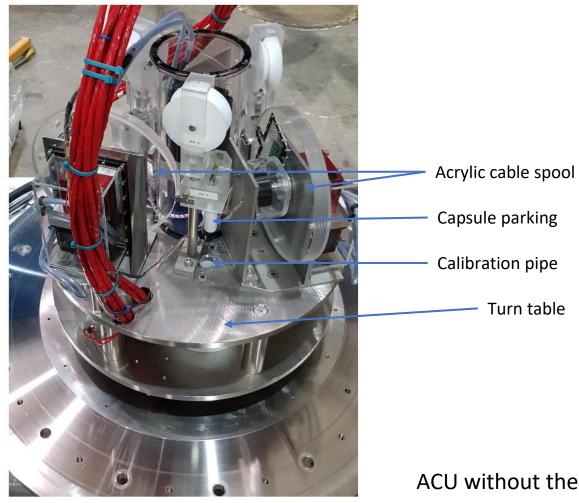
Thank you for your attention

Contact:

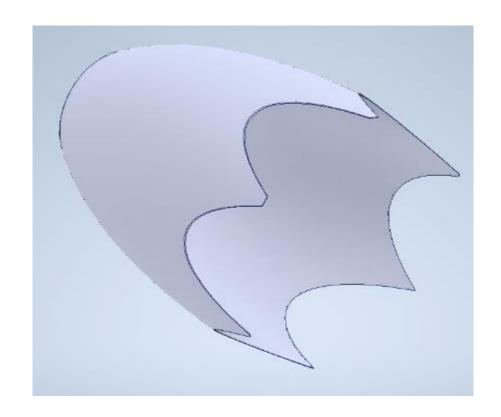
Tobias Sterr Tobias-Richard.Sterr@uni-tuebingen.de Auf der Morgenstelle 14 72076 Tübingen, Germany



BACKUP



ACU - Hardware



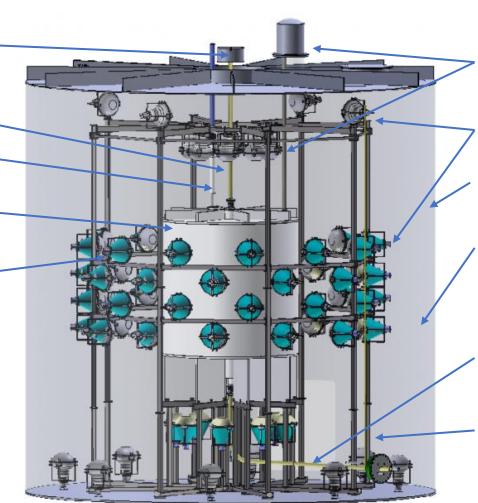
ACU without the mounted bell jar.

Motivation – Why OSIRIS?

- JUNO is an experiment, dedicated to measure the neutrino mass hierarchy
 - > Radiopure detector materials are necessary to achieve sensitivity goals of JUNO
 - ➤ Signals the mimic inverse beta decay (IBD) events, need to be reduce as far as possible
 - Thorium and Uranium chain elements in the liquid scintillator (LS) need to be $\leq 10^{-15}$ g/g (IBD physics) and $\leq 10^{-16}$ g/g for solar neutrino detection
- Purification chain of the LS include distillation, column chromatography, water extraction and steam stripping
- Final stage is the verification in the Online Scintillator Internal Radioactivity Investigation System (OSIRIS)
 - ➤ Search for impurities is based on fast coincidence decays of ²¹⁴Bi-²¹⁴Po/²¹²Bi-²¹²Po

Head tank -

Filling pipe


Thermometer rod

3m*3m central acrylic vessel (capacity of 18t LS)

24 Laser calibration capsules

For clarity reasons not visible in this picture:

- Optical separation of inner and outer volume
- Under water electronics of the PMTs

Automated calibration unit (ACU) and calibration pipe

76 JUNO 20" PMTs

9m*9m stainless steel tank

Muon veto (outer volume)

Outlet pipe

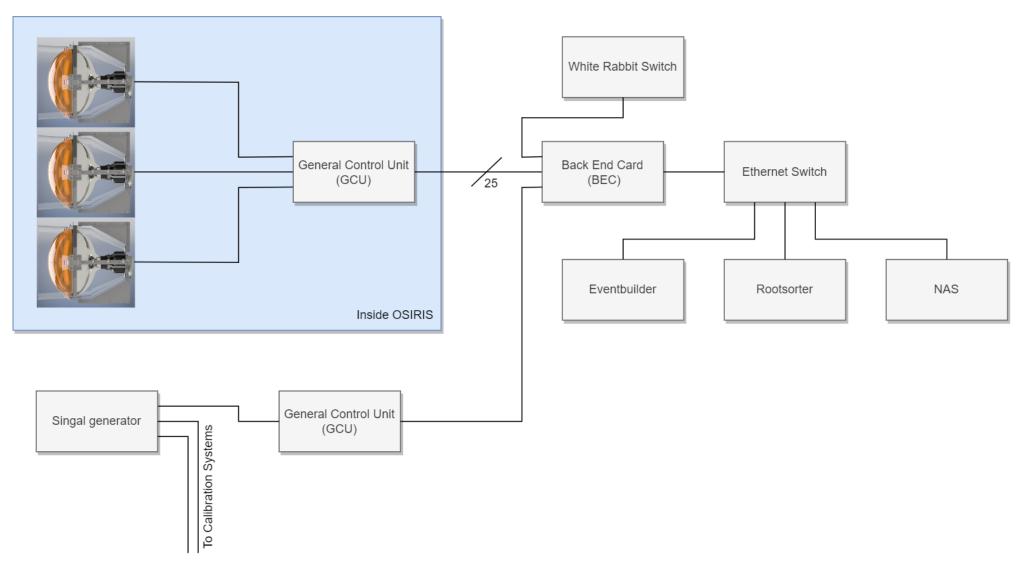
PMT support frame

The PMTs of OSIRIS

- PMTs of OSIRIS are "standard" JUNO tubes
 - ➤ Housing is changed to fit the needs of OSIRIS
- 76 PMTs in total (64 in the inner volume, 12 in the veto)
- Three PMTs are connect to one General Control Unit (GCU)
 - ➤ GCU contains all necessary electronics to create ready-to-use waveforms (see next slide)
 - ≥25+1 GCUs in total

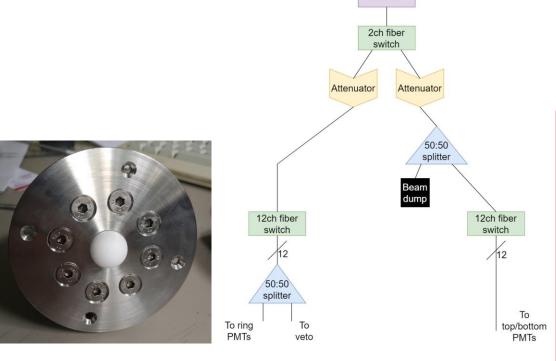
CAD and picture of the final assembly of the JUNO/OSIRIS PMTs. Picture by Yatian Pei, CAD by Cornelius Vollbrecht.

- Each GCU contains
 - ➤ A slow control configurator (Spartan6)
 - ➤ ADC plugins connected to the command-and-control SoC (Kintex7)
 - ➤ Three HV modules
 - ➤ POE and I/O interfaces
 - ≥ 2Gb of DDR3 memory + firmware flash
 - > clock and synchronization hardware
- Control is included in the slow control of OSIRIS


Insides of a GCU as used in OSIRIS. Visible are debugging connections (cables) as well as HV modules (aluminum covers). Image by ULB Brussels.

The PMTs of OSIRIS

The OSIRIS Detector

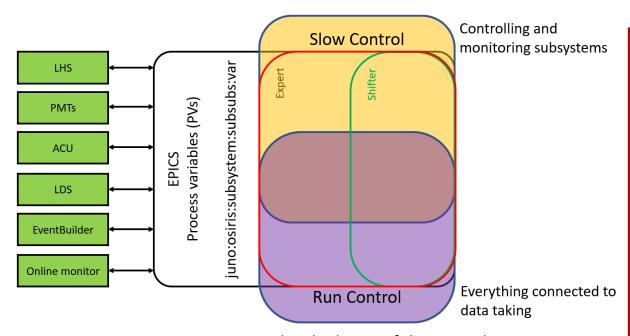

- Two possible operation modes:
 - ➤ Batch mode: Monitoring of one batch of LS for several days/weeks
 - ➤ Continuous mode: LS will constantly be filled into OSIRIS and traverse it within a day
- All parts of OSIRIS have been installed
- Currently, commissioning is ongoing
- Main filling phase of JUNO will start in early 2024
 - ➤ Will take four to six months
- An additional physics program is planned for OSIRIS after its main purpose has been fulfilled

Calibration Systems

- Laser calibration system (LCS) consists of three parts:
 - >420 ps Laser (80ps FHWM @ 50% tuning)
 - ➤ Light distribution system
 - ➤ 26 diffuser capsules distributed in the detector
- System will be used to do timing and charge calibration
- Design goals:
 - \triangleright Light intensity μ =0.01 p.e. per pulse
- LCS will be used to calibrate the system on a weekly basis

Diffuser capsule and light routing scheme of the light distribution system.

Event Building and DAQ


- Two step DAQ software:
 - 1. Event builder: Sorting and clustering PMT inputs into events
 - 2. Root sorter: Building root-trees of the data, minor online analysis
- Both parts run on individual machines
- DAQ features different modes:
 - ➤ Standard physics mode
 - >Calibration mode
 - ➤ Physics triggered source calibration mode
 - > External triggered optical calibration mode
- Maximum data rate: 500Hz (each channel)

- Including some extensions:
 - ➤ EPICS State Notation Language (SNL) to define run control state machines
 - ➤ EPICS Control System Studio (CSS) to create slow control GUIs
 - ➤ EPICS Archiver Appliance for slow control storage
- Both systems include two level access
- All hardware of OSIRIS can be controlled and monitored via EPICS

Access level scheme of the control systems of OSIRIS. Image by Kai Loo.

Schedule

• August/September 2023: Finishing air runs

• September/October 2023: Filling of OSIRIS

October/November 2023: Joint commissioning of the whole LS chain

of JUNO

• Early 2024: Start of JUNO filling