

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008324 (ChETEC-INFRA).

The XVIII International Conference on Topics in Astroparticle and Underground Physics (TAUP2023)

Underground laboratories: parallel session 5 30.08.2023

Investigation of the γ -ray angular distribution of the ${}^3\text{He}(\alpha,\gamma)^7\text{Be}$ reaction at the Felsenkeller shallow-underground laboratory

Anup Yadav

Motivation

- > BBN & stellar hydrogen burning
- Affects ⁷Be and ⁸B neutrino flux
- ➤ Affects abundance of primordial ⁷Li

The ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be reaction}$

Problems

- Only one distinct measurement at 'low energies'
- No experimental data for γ -ray angular distribution

Aims

- Connect LUNA data to others
- First measurement of γ -ray angular distribution

The ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ reaction at Felsenkeller

Approach 1: Measuring the prompt γ -rays

- Inbeam measurement with 22 HPGe detectors
- > Angular distribution for
 - **Search** for both γ_0 and γ_1

Approach 2: Activation analysis of ⁷**Be**

- Offline analysis on the 478keV γ-line
- New ultra-low background HPGe setup at FK
 - Comparable to the worlds most sensitive HPGes

Target preparation

Target

> Tantalum disk (220 μm)

³He Implantation

- Location: Ion Beam Center at HZDR
- Using 40 kV ion implanter

Target characteristics

- → ³He in tantalum backing (~180 nm)
- Implantation energy 10 keV & 35 keV
- ➤ Aimed areal density of 1x10¹⁸ at/cm²

- > Internal radio frequency ion source
 - ❖ ⁴He⁺ beam in single ended mode

- > Internal ion source
 - ❖ ⁴He⁺ beam in single end mode
- > Experimental setup
 - ❖ 22 HPGes surrounding target

- > Internal ion source
 - ❖ ⁴He⁺ beam in single end mode
- > Experimental setup
 - 22 HPGes surrounding target
 - Lead castle around the setup

- > Internal ion source
 - ❖ ⁴He⁺ beam in single end mode
- > Experimental setup
 - ❖ 22 HPGes surrounding target
- > Target area
 - Y-shaped pipe "for viewport"

LN2-cooled target

3 He $(\alpha,\gamma)^{7}$ Be

8/30/2023

8/30/2023

Approach 2 - Germanys most sensitive HPGe detector

- > HPGe with 163% relative efficiency
 - Able to measure samples with µBq
 - Recent publicationn: S. Turkat et al., Astropart. Phys. 148, 102816 (2023)

Passive shielding (x1/4300)

- ➤ 140 m.w.e. rock overburden
- ➤ 40 cm low activity concrete
- N₂ flushed box
- Lead and copper castle

Active shielding (x1/17)

- > Five scintillation panels
- Covering all angles

8/30/2023

Summary & Outlook

The ${}^{3}\text{He}(\alpha,\gamma)^{7}\text{Be reaction}$

Investigating BBN and solar fusion processes

In-beam analysis

Analysis of γ -ray angular distribution

Offline analysis

New ultra-low HPGe counting

15

Experimental setup at Felsenkeller

Angle	Detector	Remark
38°	MB2	3×60%
+38°	EB17	7×60% (GAMMAPOOL)
90°	EB18	7×60%, down-looking (GAMMAPOOL)
+90°	Can60	1×60%
-120°	MB1	3×60%
+145°	Ron100	1×100%

- 5 cm lead shielding
- > 40× lower muon flux
- \rightarrow Clean backing to reduce (α ,n) reactions

- > Theoretically predicted angular distribution
 - ❖ Tombrello et al., Phys. Rev. 131, 2582 (1963)
 - Further studies by Zhang, Nollett et al.
- Low energies (BBN window and below)
 - Preferred perpendicular emission
- > High energies (Around 1MeV)
 - Preferred forward and backward emission

Based on: T. Tombrello and P. Parker, Physical Review 131.6 (1963), p. 2582

Approach 2: Germanys most sensitive HPGe detector

Integrated counting rate [40keV;2700keV]

> Passive:

 $R = 1982(3) kg^{-1}d^{-1}$ $R = 116(1) kg^{-1}d^{-1}$ Passive & active:

Veto efficiency of the active veto

Efficiency: 99.52(19)%

