

The LEGEND-200 Liquid Argon

Instrumentation: From a simple veto to a full-fledged detector

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Igor Abritta¹, Gabriela Araujo², Laura Baudis², Nina Burlac¹, Valerio D'Andrea¹, Rosanna Deckert³, Maria Fomina⁴, Konstantin Gusev^{3,4}, Patrick Krause³, Andreas Leonhardt³, Laszlo Papp³, Nadya Rumyantseva^{3,4}, Giuseppe Salamanna¹, Mario Schwarz³, Stefan Schönert³, Egor Shevchik⁴, Diego Tagnani¹, Christoph Vogl³, Daniya Zinatulina⁴ for the LEGEND collaboration ¹ Roma Tre University and INFN Roma Tre, ² University of Zurich, ³ Technical University of Munich, ⁴ Joint Institute for Nuclear Research, Dubna

1. LAr instrumentation of LEGEND-200

Essential part of the LEGEND-200 experiment as active background suppression

tags and rejects backgrounds by detecting scintillation light emitted by liquid argon (LAr) upon interaction with ionizing radiation

Consists of two concentric barrels: Inner Barrel (IB) and Outer Barrel (OB).

- barrels equipped with wavelength-shifting (WLS) fibers coated with tetraphenyl butadine (TPB)
- fibers grouped to modules coupled to Silicon Photomultiplier (SiPM) arrays at the top and bottom
 - IB: 9 fiber modules \rightarrow 18 SiPM channels
 - OB: 20 fiber modules \rightarrow 40 SiPM channels

Wavelength-shifting reflector (WLSR) surrounds

the innermost LAr volume

- TPB-coated Copper-Tetratex foil reflects and shifts VUV photons towards blue spectrum
- gives them second chance to be detected
- serves as optical barrier against ambient radiation, e.g., from cryostat walls and ³⁹Ar decays

2. LAr scintillation and light collection

- Scintillation light emission is superposition of two excimer (Ar₂*) states
- unstable singlet state (lifetime ~ 6 ns)
- metastable triplet state (lifetime $1.3 1.6 \mu s$)
- excimers in both states emit 128 nm vacuum ultra-violet (VUV) scintillation light

A primary VUV photon is...

- absorbed by the TPB and shifted to blue
- WLS fibers shift the blue light to green which is read out by SiPMs

primary **VUV** photon

SiPM arrays

double escape peak

(1590 keV)

intensity (p.e.)

LEGEND-200

- 9 SiPMs per array and 2 arrays per fiber module (top and bottom)
- SiPM read out in parallel and differentially
 - all arrays characterized

3. Data processing chain

- SiPM signals are amplified and read out with a low-noise frontend electronics (arXiv:2211.03069)
- Charge and time reconstruction with two independent methods:
- Hyper current (HC) algorithm, based on rising edge of waveform (→ independent of decay time), exhibits 95% accurate charge reconstruction and 10 ns pulse onset time reconstruction precision
- o Digital Penalized Least Mean Squares (DPLMS)-filterbased reconstruction algorithm for treatment of more noisy waveforms performs equivalently to HC (EPJC 83, 149 (2023))
- p.e. spectrum (summed p.e. values for all working channels on an event-by-event basis) shows excellent charge reconstruction for all channels

4. Special calibration runs from LEGEND-200 (L200) commissioning runs with 60 kg of Ge-detectors

single escape peak

(2101 keV)

LEGEND-200

GERDA

intensity (p.e.)

²²⁸Th run: focus on intensities of LAr light coincidences to single escape peak (SEP) and double escape peak (DEP) of high-energy gamma line (208Tl line at 2615 keV)

و 0.5 -

→ factor 3 to 4 higher p.e. yield obtained in L200 compared to GERDA (DEP)

< 1 p.e. of light in coincidence) of the LAr instrumentation in %: L200 **GERDA** SEP

Light shadowing (defined as observing

 0.11 ± 0.04 3.8 ± 0.1 DEP 0.2 ± 0.1 0.28 ± 0.05

→ factor 34 improvement compared to GERDA (SEP)

¹³⁷Cs run: only one main line at 661keV → allows continuous calibration via Compton continuum (mean light

400

Ge energy (keV)

5. Performance in LEGEND-200

²²⁶Ra run:

focus on LAr instrumentation's suppression power in the region of interest (ROI) at $E \in$ [1950, 2090] keV ($Q_{\beta\beta} = 2039 \text{ keV}$)

Rejection condition of LAr cut tuned on 95% pulser acceptance

→ Survival probability of events in the **ROI** is $(10.4 \pm 0.2)\%$ compared to $(30.4 \pm 0.2)\%$ in GERDA

6. Particle discrimination

LAr event topology classifier (ETC)

- The ratio R of singlet to triplet components in a scintillation event varies with radiation's linear energy transfer (LET) dE/dx
- Different radiation types have different LET's \rightarrow particle discrimination via R-values
- Utilizing ETC parameter (ETC = 1/[1 + 1/R]) to identify background types in LEGEND-200 (e.g., radon activity via ²¹⁴Bi-Po activity, search for cosmogenic backgrounds)
- Limited to LAr-triggered data until Ge-trigger time reconstruction is enhanced

Application: ²¹⁴Bi-Po tagging

• 214 Bi β -decays to 214 Po $\rightarrow \alpha$ decay of 214 Po with half-life of 164 μ s produces timecorrelated signals

 \rightarrow half-life of (188 \pm 46) μ s

→ ²¹⁴Bi-Po activity of $(23 \pm 4) \mu Bq or$ (3.8 ± 0.7) nBq/kg of LAr (in 6 t active LAr volume)

7. Time statistics

Test-statistic-based LAr veto condition exploiting the time distribution of individual light pulses in a scintillation event:

with $I_{S(T)}$ intensities of singlet (triplet) components

 $t_0 = t_{0.Ge}$ for true coincidences (TC), t_0 located randomly for random coincidences (RC)

Test statistic T that maximizes TC rejection and RC acceptance $T = \sum_{i=1}^{m} \frac{f(t_i)}{m}$ with m the total number of p.e. in one event and t_i the arrival times

8. Conclusion

- Excellent energy and time reconstruction
- Special calibration runs showed significant light yield and shadowing improvements compared to GERDA
- Background suppression successfully demonstrated (e.g., ⁴²K, ²⁰⁸Tl)
- Advanced methods such as the event topology classifier and the usage of test statistics introduced
- → LAr instrumentation elevated to a full-fledged detector

