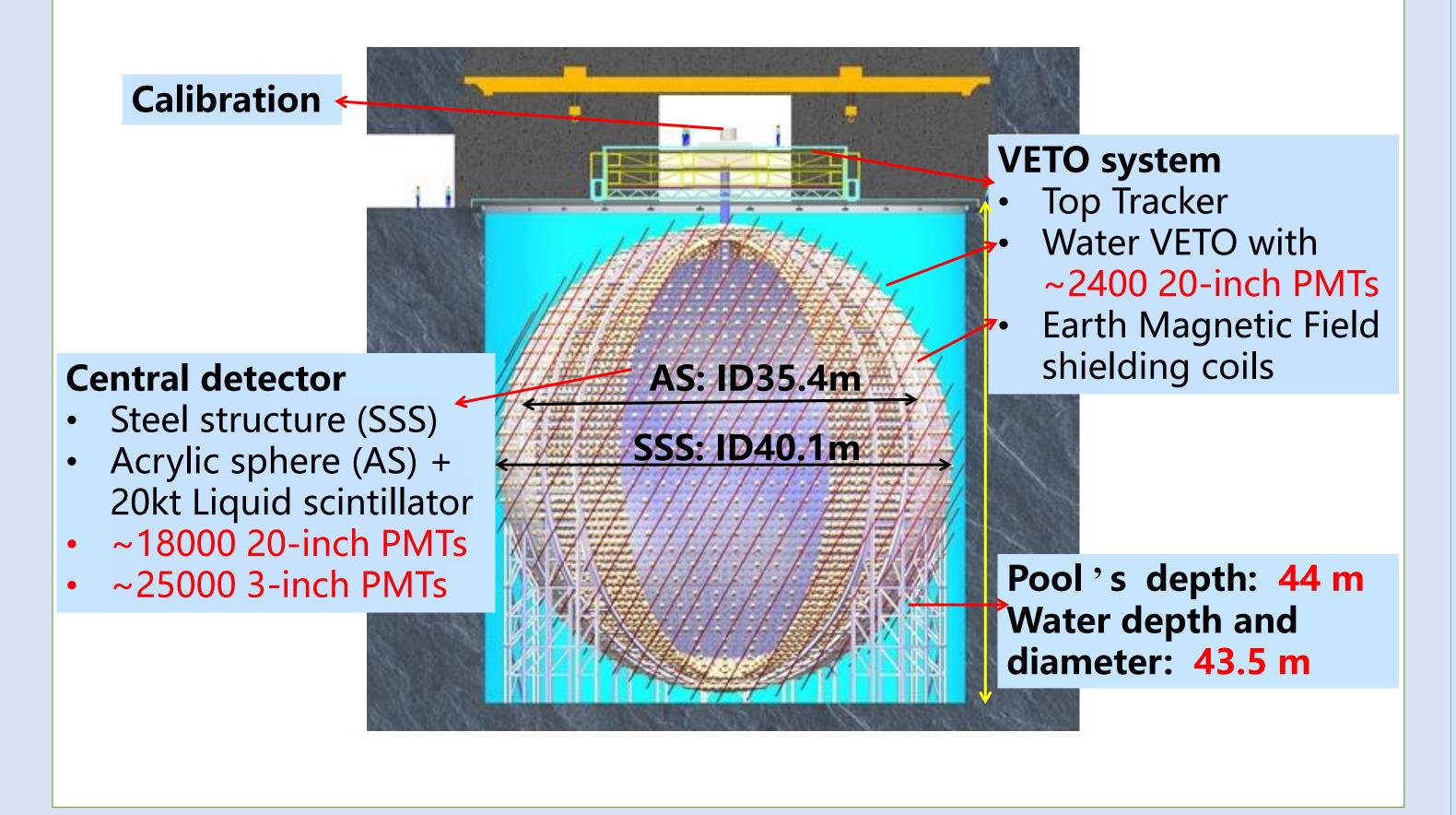


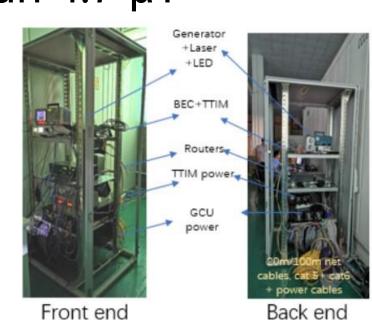
Performance of 20-inch Potted PMTs for JUNO

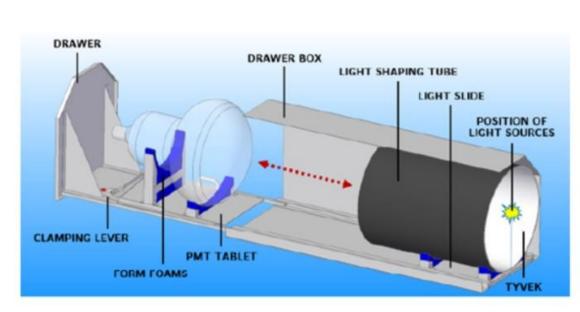

Caimei Liu^{1,2}, Min Li^{1,2}, Zhimin Wang¹
On Behalf of the JUNO Collaboration

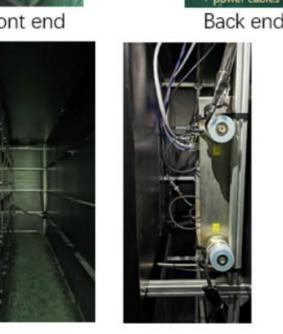
¹Institute of High Energy Physics, Beijing 100049, China

²University of Chinese Academy of Sciences, Beijing 100049, China

JUNO Detector


- Main physics goal: Determining neutrino mass ordering and making a sub-percent measurement of three oscillation parameters
- **High efficient PMTs:** Photon detection efficiency (PDE) ~30%
- Very high PMT coverage: 78%




Container System^[1]

• Six alternating layers of silicon-iron: Shielding the external fields with the residual magnetic field less than 4.7 µT

Top left: the outer view of container #D.

Top right: the rack where the power and net controller installed.

Bottom left: the schematic view of a drawer box.

Bottom right: the internal view of the container and an installed box of 1F3

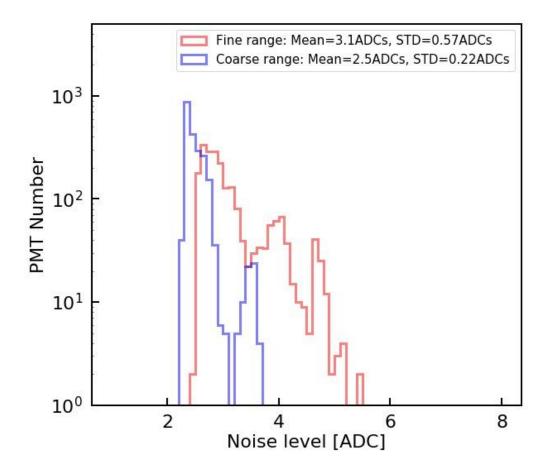
• 32 independent working channels (drawers)

electronics. between the drawers.

- Stabilized LED light source with 420 nm wavelength
- A HVAC (heating, ventilation, and air conditioning) unit: Controlling the measurement environment inside the containers (23°C for the container #D)
- JUNO 1F3 electronics prototype:
 - > High voltage unit (HVU): Providing the bias voltage to PMTs
 - ➤ Global control unit (GCU): Analog-digital conversion and waveform acquisition
- A DAQ system based on Linux^[2]: Initialization, configurations of HVU and electronics, control waveform readout, temperature and DCR monitoring

 More detailed introduction can be found in the paper^[3].

Global Control Unit



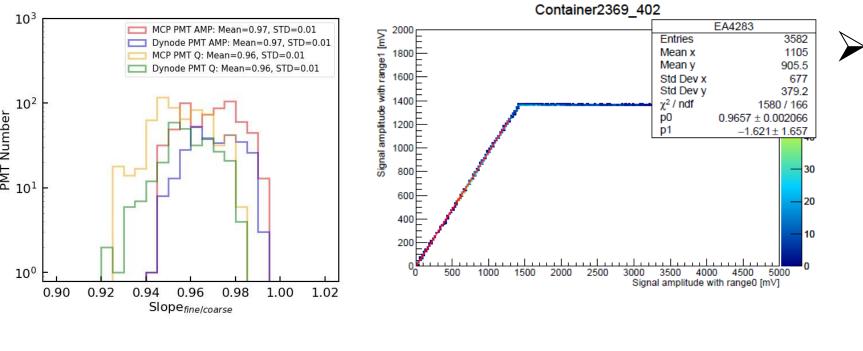
- One GCU has 3 channels
- One channel has two ranges
 - Fine Range (range1, High gain): 1ADC=0.122 mV 0-128 p.e.
 - > Coarse Range (range0, Low gain): 1ADC= 0.832 mV 0-1000 p.e.

More detailed introduction can be found in the paper^[4].

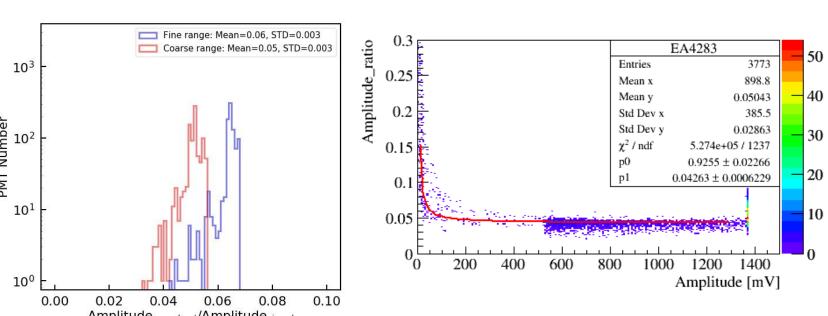
Results from the Container System

- Noise level of electronics
 - > Fine range: 3.1 ADCs (4% for SPE)
 - > Coarse range: 2.5 ADCs

Performance of LPMT with SPE model

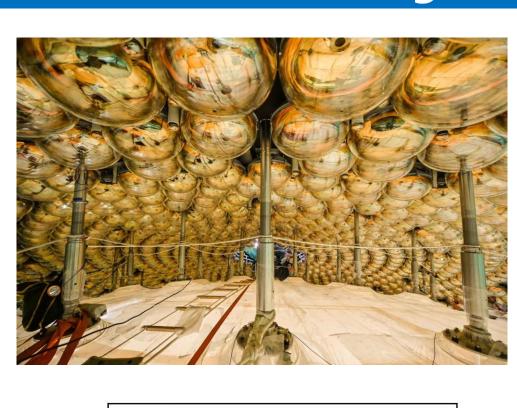

- > The amplitude threshold for DCR measurement is around 1.8 mV.
- > The amplitude threshold for waveforms analysis is 3 mV.
- > The charge integration window is [-20ns,+50ns] for peak.
- > The amplitude of SPE is about 8 mV.

The typical parameters of potted dynode and MCP PMTs in container #D with 1F3 electronics^[5].

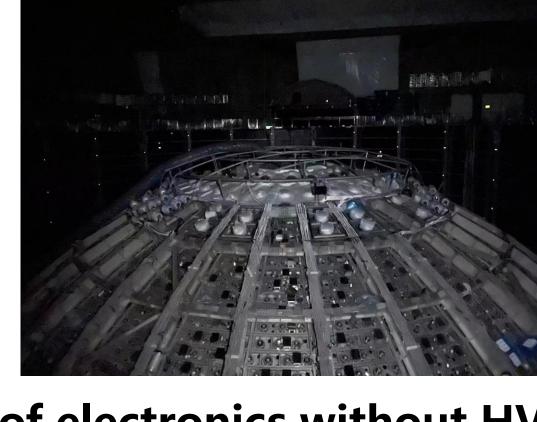

Parameters	ALL PMT	Dynode PMT	MCP PMT	High-QE PMT	Low-QE PMT
Number of PMT	1969	738	1231	576	655
HV/V	1799	1929	1722	1701	1745
Gain /10 ⁶	10.0	9.9	10.0	9.9	10.1
DCR/kHz	26.5	16.6	32.4	31.0	33.9
Resolution /%	30.5	28.0	32.0	32.7	31.2
P/V	3.8	3.6	3.9	3.9	3.9
FWHM /ns	10.5	10.8	10.3	10.4	10.1
S/N	14.3	14.2	14.3	14.2	14.4
Rise Time /ns	4.8	6.4	3.9	4.0	3.9
Fall Time /ns	11.9	8.9	13.6	14.1	13.1
Relative TTS /ns	8.8	6.2	10.3	10.3	10.4
Amplitude /mV	8.1	7.9	8.1	7.9	8.4

The results are consistent with this paper^[1].

Comparison of two ranges in electronics with self trigger mode



➤ The amplitude and charge agreement of the two ranges are approximately 97% and 96%, respectively.


The amplitude between signal and overshoot of the two ranges are about 6% and 5%.

Light-off Test of JUNO Detector

Noise level [ADC]

Noise level of electronics without HV

- ➤ As of June, a total of 651 GCUs had been tested for electronic noise.
- > Fine range: 2.8 ADCs (4% for SPE)
- > Coarse range: 2.5 ADCs

References

[1] Abusleme A, Adam T, Ahmad S, et al. Mass testing and characterization of 20-inch PMTs for JUNO[J]. The European Physical Journal C, 2022, 82(12): 1168.

[2] T. Zhou et al. DAQ readout prototype for JUNO. Radiat Detect Technol Methods, 5:600–608,

2021. ISSN 0168-9002. doi: https://doi.org/10.1007/s41605-021-00290-5. URL https://doi.org/10.1007/s41605-021-00290-5. New Developments in Photodetection NDIP11. [3] B. Wonsak et al. A container-based facility for testing 20' 000 20-inch PMTs for JUNO. Journal of Instrumentation, 16(8):T08001, August 2021. doi: 10.1088/1748-0221/16/08/T08001. [4] Coppi A, Jelmini B, Bellato M, et al. Mass testing of the JUNO experiment 20-inch PMT readout electronics[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1052: 168255. [5] Liu C, Li M, Wang Z, et al. Check on the features of potted 20-inch PMTs with 1F3 electronics prototype at Pan-Asia[J]. Journal of Instrumentation, 2023, 18(02): P02003.