

Atmospheric Neutrino Event Selection and Classification for Oscillation Analysis at JUNO

Xinhai He^{1,2,*} on behalf of the JUNO Collaboration ¹Institute of High Energy Physics, Beijing, China

²University of Chinese Academy of Sciences, Beijing, China

*xhhe@ihep.ac.cn

Jiangmen Underground Neutrino Observatory (JUNO)

JUNO is a multi-purpose liquid-scintillator experiment in China that aims to determine the Neutrino Mass Ordering (NMO) [1, 2]. > 20 kton liquid-scintillator detector

- > ~78% optical coverage
 - 17,612 20-inch large PMTs and 25,600 3inch small PMTs instrumented in the Central Detector (CD)
- ~700 m rock overburden
 - Natural shield to suppress cosmic muons

Motivation

- >JUNO with large target volume is capable of detecting large statistics atmospheric neutrinos.
- >Atmospheric neutrinos can contribute to the NMO sensitivity with a complementary approach: using the matter effects on neutrino oscillations.
- > Performance of event selection will directly impact the sensitivity of atmospheric neutrino oscillations.

Event Selection Strategy

WORK IN PROGRESS

	Assumptions [2]	Developments	Improvement
ent Selection v_e/\bar{v}_e	$E_{vis} > 1 \text{ GeV}$ $Y_{vis} = E_h / E_{vis} < 0.5$	$E_{vis} > 1 \text{GeV}$	~30% more stats.
irectionality	$\sigma_{ heta_{\mu}} = 1^{\circ}$ $\sigma_{ heta_{ u}} = 10^{\circ}$	$\sigma_{ heta_{ u}} < 10^{\circ}$ ($E_{ u} > 3 \text{ GeV}$)	Energy dependent
	CC- <i>e</i> /CC-µ/NC: 100% eff.	CC- <i>e</i> /CC-μ/NC: 80%~95% eff.	
lassification	$v \text{ vs } \overline{v}$: simple classification with N_e , Y_{vis}	ν vs ν̄: 50%~80% eff.	Better ν vs $\overline{\nu}$ separation
Energy	$\sigma_{E_{vis}} = 1\%/\sqrt{E_{vis}}$	$\sigma_{E_{\mathcal{V}}}$	E_{ν} instead of $E_{\nu is}$
$_{g}$: The Michel electron numbers $* E_{h}$: The visible energy of hadron showers			