



# Background Modeling for LEGEND-200



Large Enriched Germanium Experiment for Neutrinoless ββ Decay

multi-site (bottom) events [8



Rushabh Gala on behalf of the LEGEND collaboration North Carolina State University, Raleigh NC USA; Triangle Universities Nuclear Laboratory, Durham NC USA

#### Ονββ and LEGEND

 $0\nu\beta\beta$ : a hypothetical process, allowed only in ββ decay candidates

Observation of  $0\nu\beta\beta$  confirms  $\nu$  to be a Majorana particle *i.e.*  $\nu = \overline{\nu}$ 

LEGEND (Large Enriched Germanium Experiment for Neutrinoless Double-Beta Decay) is a  $^{76}$ Ge based  $0\nu\beta\beta$  experimental program[1]

LEGEND-200: Operational @ LNGS, Italy LEGEND-1000: Design and planning phase

#### LEGEND-200

- ~142kg of enriched <sup>76</sup>Ge detectors installed
- ~130kg of detectors working Total exposure till date: 10 kg-yr



#### Comparing with GERDA[2]

- Higher average mass of detectors
- Higher efficiency in detecting background peaks
- Better LAr instrumentation
- Self vetoing capability from WLS materials such as PEN

Brady Bos: LEGEND-200 Data Acquisition, Monitoring and Calibration

#### Why model the background?

- Background sources for the LEGEND include radioactive decays from the array components,  $2\nu\beta\beta$  in the Ge detectors, gammas and neutrons from the laboratory environment and cosmic ray muons
- Modeling the background contribution is essential as LEGEND operates in almost a background free regime
- $\circ$  A model needed for non-0νββ Beyond Standard Model (BSM) studies
- Background decomposition from the LEGEND-200 experiment would help us compute and make predictions for LEGEND-1000

Samuel Watkins: Searching for Beyond Standard Model Physics with LEGEND-1000

### Simulations workflow

- A complex workflow developed to be used with both LEGEND-200 and LEGEND-1000
- Construction of geometry is done using an in-house developed GEANT4 based application MaGe
- Simulations and analysis is done using the resources available at NERSC computing cluster[5]









- Results of the MaGe output are post-processed to include dead layer effects, detector-wise energy resolution, PSA and Liquid Argon response
- To simplify the complex computational challenge, a tierbased workflow[6] is developed and automated using `Snakemake'[7]

A simplified workflow of simulation package used for background modeling

### Optical response

- To model the optical response of LAr instrumentation, separate optical simulations are performed using MaGe
- For each bin photon detection probability in the SiPMs calculated
- Total number of expected photoelectrons from an event determined using



XY and XZ slices of the optical maps showing photon detection probabilities in each bin



Rosanna Deckert: The LEGEND-200 Liquid Argon Instrumentation: From a simple veto to a full-fledged detector

Luigi Pertoldi: Liquid argon light collection and veto modeling in GERDA Phase II

### Pulse Shape Analysis

- $\circ$  0νββ is a single-site event
- Most LEGEND backgrounds are
- Multi-site events (MSE) Pulse shape analysis (PSA) can distinguish between SSE and
- To model the PSA in the Ge detectors, drift times are
- calculated for each detector A drift time cut off is set to match detector response to identify and reject multi-site



Valentina Biancacci: <sup>76</sup>Ge Detectors of LEGEND

experiment: Production, Characterization, Performance

the white lines are the drift paths of holes towards

and after cuts

#### L200 PDFs

 Simulated all expected backgrounds for LEGEND-200

events

- More than 99% <sup>232</sup>Th and 75% <sup>238</sup>U chain rejected by multiplicity + LAr cut in ROI ~ 2039keV
- Contribution from the near components is higher than the far components before cuts
- PSA would further suppress <sup>232</sup>U, <sup>238</sup>Th chain backgrounds Nylon shrouds :
- covering the strings, help suppress the β's from <sup>42</sup>K decay



from electronics

before and after

applying cuts

## Background decomposition

far component: Coppe

Top Plate before and

after applying cuts

- Background decomposition from the simulation result and first set of LEGEND-200 data collected using Bayesian analysis Toolkit[9][10]
- Screening measurements have been conducted on components
- to assess radio-contamination  $\circ$  A gaussian distribution with  $1\sigma$

uncertainty is used as a priors

- for fitting When 90%C.L. is available, an exponential prior distribution is used with 90% area covering the values from 0-90%C.L. upper
- limit In case of no measurements available, a uniform prior distribution assigned

- A difference in data and the screening measurements would result in significant difference between the prior and the posterior
- This can provide insights into the background source and be instrumental in the modeling process



#### Next Steps

- o The fits and the model are preliminary and would be more refined as we collect more data from the experiment
- o Perform systematic studies to apply a dead layer model for the Ge detector surfaces as well as a PSA model to reject multi-site events
- o String wise and detector-type wise estimation of background rate will give us insight into the nature and the location of the background sources in the array

## References

- [1] Abgrall, N., et al. The large enriched germanium experiment for neutrinoless double beta decay (LEGEND), AIP Conference Proceedings. Vol. 1894. No. 1. AIP Publishing
- LLC, 2017. [2] GERDA Collaboration., Agostini, M., Bakalyarov, A.M. et al. Upgrade for Phase II of the Gerda experiment. Eur. Phys. J. C 78, 388 (2018).
- https://doi.org/10.1140/epjc/s10052-018-5812-2 [3] Abgrall, Nicolas, et al. The Majorana Demonstrator neutrinoless double-beta decay experiment, Advances in High Energy
- Physics, 2014, (2014). [4] Abgrall, N., et al. LEGEND-1000 preconceptual design report, arXiv preprint, arXiv:2107.11462 (2021).
- [5] https://www.nersc.gov/
- [6] https://github.com/legend-exp/legend-simflow.git [7] Mölder, F., Jablonski, K.P., Letcher, B., Hall, M.B., Tomkins-Tinch, C.H., Sochat, V., Forster, J., Lee, S., Twardziok, S.O., Kanitz, A., Wilm, A., Holtgrewe, M., Rahmann, S., Nahnsen, S., Köster, J., 2021. Sustainable data analysis with Snakemake. F1000Res 10, 33.
- [8] Alvis, S.I., et al. Multisite event discrimination for the majorana demonstrator, Phys. Rev. C, 99.065501 (2019) [9] https://github.com/bat/bat.git
- [10] https://github.com/gipert/hmixfit.git



























