Impact of marine microseisms on the response of the CUORE cryogenic calorimeters

Simone Quitadamo^{1,2} on behalf of the CUORE collaboration

GSSI - Gran Sasso Science Institute ² INFN - Gran Sasso National Laboratory

VIENNA 2023

I. CUORE experiment

- CUORE searches for $0\nu\beta\beta$ decay of ¹³⁰Te:
- \rightarrow rare process: $T_{1/2}^{0\nu}(^{130}\text{Te}) > 2.2 \cdot 10^{25} \text{ yr};$
- > BSM process (lepton number violation $\Delta L=2$);
- \rightarrow if detected \rightarrow majorana neutrinos ($\nu \equiv \overline{\nu}$).

• CUORE:

- > 988 low-T calorimeters at T ~ 15 mk;
- > TeO, crystals + Ge-NTD thermistors;

importance of understanding sources and time evolution of sub-Hz noise (seismic noise, marine microseisms) to improve noise-reduction techniques and energy resolution.

sensitivity to $0\nu\beta\beta$ decay:

$$S^{0
u} \propto \sqrt{rac{M\,T}{\Delta E\,B}}$$

3. Storms-induced low-v noise

3.1 Time evolution of low-frequency noise

- Power of a ν -component of the noise: $P_{\nu} = \int_{\nu_1}^{\nu_2} ANPS(\nu) d\nu$
- Noise power ratio: $R_{
 u}=rac{P_{ref,
 u}}{P_{ref,
 u}}$
- average R_{y} on $\frac{1}{3}$ of CUORE detectors (the most sensitive);
- noise increases during storm;
- \rightarrow maximum variation at $\nu \sim 0.6$ Hz;
- > v > 0.9 Hz almost unaffected;
- > 1.4 Hz and harmonics almost unaffected (pulse tubes induced).

3.2 Sensitivity of low-v noise to sea waves intensity

- Sea waves intensity: $I_S = \int_{t_i}^{t_f} \left[VHM0_A(t) + VHM0_T(t)\right] dt$
- Quantify noise variation as a function of sea waves intensity:

- The relative angular coefficient $m_{\nu}^{rel} = \frac{m_{\nu}}{min(\langle P_{\nu} \rangle)}$ quantifies the sensitivity of a noise v-component to changes of sea waves intensity.
- > v > 0.9 Hz almost unaffected;
- maximum sensitivity at $\nu \sim 0.6$ Hz

hint for identifying $\nu \sim 0.6$ Hz as a resonant mode of CUORE.

2. Multi-detector approach

- Study correlation between CUORE low-frequency noise and marine microseisms in Mediterranean Sea.
- Multi-detector approach:
 - > E.U. Copernicus Marine Service: identify storms and evaluate wave amplitude (VHM0);
- seismometers: detect and reject earthquakes;
- > CUORE detectors: study low-frequency noise.
- 21st September 2020 1st October 2020:

Marine microseisms excite noise at sub-Hz frequencies.

4. Next steps

- Ongoing:
- > extend analysis to other storms in different years;
- extend analysis to all CUORE detectors, and search for position-dependent effects;
- evaluate the impact on the detectors energy resolution.
- Possible outcomes:
 - studies to improve the seismic-decoupling system for CUPID (next-gen experiment for $0\nu\beta\beta$ decay search);
 - studies to improve the detectors low-energy threshold.

This study has been conducted using E.U. Copernicus Marine Service Information.