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Primary cosmic ray
Primary  cosmic  rays  are  thought  to be mostly produced and
accelerated in the supernovae shocks in our galaxy. The primary
cosmic rays include proton, helium, carbon, oxygen, silicon and iron
etc.

The measurement of primary cosmic ray spectra is essential to understand the 
cosmic ray origin, acceleration and propagation mechanisms.



AMS Launch May 2011
Space Shuttle Endeavour
Mission STS-134
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AMS installed on the ISS
Near Earth Orbit: 

altitude 400 Km
inclination 52°
period 92 min

AMS mission duration: 
Entire ISS lifetime (up to 2028-2030)

To-date ~222 billion  cosmic. rays have been
measured by AMS: e+, e-, p, p̅, nuclei, γ,…

400 billion events expected to 2030 
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ToF (4 Layers): Velocity and Direction
Δβ/β2 ≈ 1-2% (Z≥2), 4% (Z=1)

Tracker (9 Layers) + Magnet: Rigidity (Momentum/Charge)
with multi-TV maximal detectable rigidity (MDR)

Coordinate Resolution MDR
Z=1 10 µm 2 TV
Z≥2 5-8 µm 3.0-3.7 TV

UTOF

LTOF

ECAL

RICH
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7-8

5-6
3-4

L1

L9

L1, UTOF, Inner Tracker (L2-L8), LTOF and L9  
Consistent Charge Along ParOcle Trajectory
Inner Tracker Charge ResoluOon:
ΔZ = 0.05 - 0.35 (1≤Z≤ 28)  

AMS Nuclei Flux Measurements
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AMS Nuclei Flux Measurements 

Measurements require  knowledge of detector performance details, the resolution 
functions, acceptance … obtained by AMS Monte Carlo Simulations

Rigidity  p,…Fe 1…3500 GV

Effective  Acceptance

Time 220,000,000 sec R> 30 GV  

Fi=
Ni

Ti Ai εi DRi

Trigger  Efficiency  

Bin width

Selected Events  
-- Background removed
-- Corrected  for Bin to Bin Migration 

In AMS 2 to 4 independent analysis are done to compute   Ni, Ai, εi, Ti for each flux  
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An accurate nuclear reaction cross-section model is a crucial factor in improving the
precision of cosmic-ray spectrum measurements. The main composition of AMS material
include carbon and aluminum elements. The nuclear reaction cross-section model between
various nuclei and carbon or aluminum before AMS experiments exhibit significant
uncertainties.

Measurement of nuclear reaction cross-section with cosmic ray 

AMS can collect cosmic particles entering the detector from both the right and the left
directions when the detector is flying horizontally. This allows the measurement of reaction
cross-sections of various nuclei colliding on the AMS material within the GV to TV rigidity
range.

Use right-to-left nuclei 
to measure nuclear 
interactions in the 

TRD+TOF

Define (P, Z) of nuclei with the central spectrometer

Use right-to-left nuclei 
to measure nuclear 
interactions in the 

TRD+TOF
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Based on the measurements, AMS adjusted the relevant parameters of nuclear
interaction models in the simulation data to guarantee a better precision for the
spectra measurements.

Measurement of nuclear reac/on cross-sec/on with cosmic ray 



Published

Unpublished
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Cosmic Rays Chemical Composition with AMS
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Latest AMS Measurements of He, C and O spectra

Phys. Rev. Lett. 119, 251101 (2017): AMS found that He, C, O have an identical rigidity dependence 
above ~60 GV and at higher rigidities they all deviate from a single power in an identical way 

Tradi&onal Understanding
Single Power Law ɸ=CRγ

AMS 11 Years 
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p He Flux Ratio and Spectral Indexes 
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A=3.14±0.07
Δ=−0.300±0.009

AMS found that proton flux have two
components, one is like Helium and
another is unique to proton flux.

Physics Reports, 894, 1 (2021) :

A+(R/3.5GV)∆
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AMS p He C and O Fluxes Comparison with Other Experiments
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Ne, Mg, and Si : Heavier Primary Cosmic Rays
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γNeMgSi = γHeCO + (-0.032 ± 0.006)

Phys. Rev. Lett. 124, 211102 (2020): AMS previously  observed that light primary cosmic rays He, C, and O have 
iden&cal rigidity dependence above 60 GV and deviate from a single power law above 200 GV. Surprisingly, heavy primary 

cosmic rays Ne, Mg, and Si also have iden&cal rigidity dependence above 86 GV, but it is dis&nctly different from light 
primary cosmic rays.

This shows that primary cosmic rays have at least two dis3nct classes of rigidity dependence. 
/

He-C-O and Ne-Mg-Si fluxes Rigidity Dependence
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Latest AMS Results: Sulfur Rigidity Dependence

15

Phys. Rev. Lett. 130, 211002 (2023): Sulfur belongs to the same class as Ne, 
Mg, and Si.
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AMS Ne, Mg, Si, and S Nuclei Flux  Measurements:

TRD

RIC
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Neon Z=10

M. J. Boschini et al 2020 ApJS 250 27
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AMS results are different from previous measurements both in magnitude 
and the energy dependence. 15
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New proprieties of traditional primary cosmic rays
Tradi&onal primary cosmic rays
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Unexpectedly, the Fe spectrum exhibits same rigidity
dependence with primary cosmic rays He-C-O group indicating
that Fe belongs to the lighter He-C-O group rather than the
heavier Ne-Mg-Si-S group.

New proprieties of Iron Nuclei Spectrum
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Cosmic ray Iron spectrum
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Summary

Up to now, AMS has collected more than 200 billion cosmic rays and
measured the spectra of primary cosmic rays with unprecedented
precision. In this report we presented the primary cosmic ray p, He, C, O,
Ne, Mg, Si, S and Fe spectra from 2 GV to 3 TV based on the latest AMS
results, many new unexpected properties are revealed.

Future high-precision AMS data on all cosmic-ray data will continue to
provide unique insights into the understanding of cosmic rays.
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Back up
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Transition Radiation Detector
（TRD）:

𝒆±/𝒑 identification, charge 
measurement

Alpha Magnetic Spectrometer（AMS）

径迹探测器（Tracker）:
测量动量、电荷

Permanent Magnet：
Anti-particle identification, 
momentum measurement

Ring Imaging Cherenkov（RICH）:
velocity, charge measurementElectromagnetic Calorimeter（ECAL）:

energy measurement

The charge, energy and 
rigidity(momentum/charge) of 

cosmic rays carry the key 
information

AMS can measure the charge, 
energy and rigidity of a particle 
multi-times independently on its 

trajectory inside the detector

Time Of Flight（TOF）:
velocity, charge measurement

Silicon Tracker:
momentum, position, charge 

measurement



Detector calibration before launch
CERN SPS beam test:
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Detector calibration and alignment on orbit

The vibrations and acceleration during the AMS launch
into space could change the tracker positions at micron
level, this misalignment was precisely corrected in
space by analyzing track trajectories of opposite
charged particles, This allows to determine the
displacement of tracker L2-L8 layers with an accuracy
better than 0.2μm, corresponding to the accuracy of the
tracker rigidity-scale of better than 1/30TV-1 .
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