

Projections of Discovery Potentials for future $0\nu\beta\beta$ Decay Experiments

M. K. Singh, H.B. Li, H.T. Wong

Institute of Physics, Academia Sinica, Taipei, Taiwan

Based on: arXiv:2308.07049 (2023); PRD 101, 013006 (2020).

Introduction

Neutrinoless double beta decay $(0\nu\beta\beta)$ [Furry, 1939]

國聖

- ${}_{Z}^{N}A_{\beta\beta} \rightarrow {}_{Z+2}^{N-2}A_{\beta\beta} + 2\overline{e}$
- Forbidden in Standard Model
- \bullet $\Delta L = 2$
- § Observation of $0\nu\beta\beta$ implies new physics:
 - Neutrinos are Majorana particles ($v = \overline{v}$)
 - Lepton number violations
 - Effective Majorana Neutrino Mass $\langle m_{BB} \rangle \neq 0$
- **Energetically possible for 35 nuclei**
- A few are experimentally relevant
- **Present work:** Required Sensitivity: Exposure vs **Background**

Formalism

- ▲ Half-life in Mass Mechanism : $\left| \frac{1}{T_{1/2}^{0\nu}} \right| = G^{0\nu} g_A^4 \left| M^{0\nu} \right|^2 \left| \frac{\langle m_{\beta\beta} \rangle}{m_e} \right|^2$
- **Effective Mass:** $\langle m_{\beta\beta} \rangle = |U_{e1}^2|m_1 + |U_{e2}^2|m_2e^{i\alpha} + |U_{e3}^2|m_3e^{i\beta}|$
- **▲** Experimentally measurable Half-life:

$$T_{1/2}^{0\nu} = \ln 2 . N(A_{\beta\beta}). t_{\text{DAQ}}. \left[\frac{\varepsilon_{RoI}}{N_{obs}^{0\nu}}\right] = \ln 2. \left[\frac{N_A}{M(A_{\beta\beta})}\right]. \sum . \left[\frac{\varepsilon_{RoI}}{N_{obs}^{0\nu}}\right]$$

▲ Combined Half-life:

A Model for NME's Uncertainty

- **!** In Theory Inverse correlation between G^{0v} and $M^{0v/2}$
- * Decay rates (1 event/ton-yr with full efficiency) are similar at given $\langle m_{\beta\beta} \rangle$ and constant g_A

- **No favored** $0\nu\beta\beta$ isotope.
 - \sum (ton-year). $\left(\frac{\varepsilon_{\text{RoI}}}{N_{\text{obs}}^{0\nu}}\right) \alpha \left(\frac{1}{\langle m_{\rho\rho}\rangle}\right)^2$
- **Realistic interpretation lies within a factor of [0.5, 2.0].**

Statistics & Theme

- **□** Discrete/Complete Poisson
 - (i) Low Background (ii) Rare Processes

 \square S₀ derived with complete Poisson \longrightarrow Always \ge Continuous **Approximation**

B₀ (counts)

- \square Continuous approximation \longrightarrow Always Underestimate S_0 □ Deviation As much as 60% @ Low Background ($B_0 \sim 10^{-3}$)
- □ Both Consistent Within 3% @ Large $B_0 \ge 100$

 $\cdot (\mathbf{S}_0^{cont} - \mathbf{S}_0^{Poi}) / \mathbf{S}_0^{Poi}$

 B_0 (counts)

Likelihood Analysis

Counting vs Extended Likelihood

- Less Events Required to Establish Positive Signals
- Criteria of $P_{3\sigma}^{50}$ Satisfied for all B_0 in \mathcal{L}_{CE} NOT in \mathcal{L}_{C}
- \rightarrow At $[(B_0/\sigma_{E0})>1]$ Counting-only Analysis Overestimate $S_0[\mathcal{L}_{CE}]$ by 6%
- S_0^{opt} [cont] Underestimate Strength of $S_0[\mathcal{L}_{CE}]$ by 20%
 - Overestimated by ~ 30% & > $S_0[\mathcal{L}_{CE}]$ for all $(B_0/\sigma_{E0}) > 5 \times 10^{-4}$

Background Uncertainties

 $^{-3}B_0/\sigma_{E_0}^{10^{-2}}$ (counts/RMS)

- **❖** Realistic Experiments \blacksquare Background B_0 can have Uncertainty σ_R
- \diamond At low-statistics (B₀<1) Negligible Effects of σ_R [Larger in \mathcal{L}_C than \mathcal{L}_{CE}]
- **Statistical Fluctuations Dominate Over Uncertainty in B**₀

B₀ (counts)

Optimal Region of Interest

Sensitivity Projection

Standard-Model-allowed irreducible background

 ${}_{Z}^{N}A_{\beta\beta} \rightarrow {}_{Z+2}^{N-2}A_{\beta\beta} + 2\overline{e} + 2\overline{\nu}$ [Goeppert-Mayer, 1935] Worse resolution (Δ) \Longrightarrow Larger RoI \Longrightarrow Larger $2\nu\beta\beta$ **Background**

- **Sensitivities**
- □ At BI₀=10⁻⁶ (counts/FWHM-ton-yr) \longrightarrow (\triangle_{QBB} , \sum) \approx (<1%, >1.5 tonyr) & (<0.4%, >310 ton-yr) to cover IO & NO
- \square At BI₀ = 1 (Best Achieved) \longrightarrow Overlap of Solid & Dotted lines $2v\beta\beta$ is insignificant

- \square of 10 ton-yr (with $\triangle Q_{\beta\beta} < 1.4\%$) & 100 ton-yr (with $\triangle Q_{\beta\beta} \sim 8\%$) **Required to Cover IO**
- ✓ Probing Entire NO Not Possible even with 1000 ton-yr @ Best Achieved Resolution = 0.12% of 76 Ge
- \square Coming Generation of Projects \longrightarrow Could Cover IO at $\Sigma > 10$ ton-yr
- \square Covering NO entirely \longrightarrow Require $\sum \sim 1000$ ton-yr at $\Delta Q_{\beta\beta} \leq 1\%$ Together with BI_0 at $\leq 10^{-1}$ counts/FWHM-ton-yr
- \square Required Σ in Realistic Experiments: $\Sigma' = \Sigma / [IA.ε_{expt}]$

Summary & Prospects

- **☑** Two Expected Features → Required Signal Strength
- **In counting-only experiments:**
- **☑** Strength can be derived correctly with complete Poisson analysis
- **☑** Continuous Approximation would underestimate the values
- \square Incorporating continuous variables as additional constraints:
- **☑** Reduced Signal Strength relative to Counting-only analysis

Acknowledgment

This work is supported by the Academia Sinica Principal Investigator Award AS-IA-106-M02, contracts 106-2923-M-001-006-MY5, 107-2119-M-001-028-MY3 and 110-2112-M-001-029-MY3, from the Ministry of Science and Technology, Taiwan, and 2021/TG2.1 from the National Center of Theoretical Sciences, Taiwan.