From double to single beta decays – the search for the isomeric decay of ^{180m}Ta in the Majorana Demonstrator

Ralph Massarczyk (LANL)

LA-UR-23-29501

A bit of (ancient) history...

In greek mythology **Tantalus** offended the gods...

... so he was punished to be **trapped** in a pond under a fruit tree.

He could **not** reach **up** to eat.

He could **not** lean **down** to drink.

Tantalus trapped as punishment.

A bit of (modern) history...

Level scheme of 180mTa

Ta disks after arrival underground

For nuclear physics **Tantalum** (named 1802) is one of the rarest elements and has two isotopes...

... one of them (180mTa) is **trapped** in an isomeric state while the ground state decays.

It can **not** go to a **higher** state due to energy.

It can **not** go down to a **lower** state due to spins

Variety of physics studies in the Tantalum system

- The origin of Tantalum in the universe:
 - Study helps to understand the observed abundance of ^{180m}Ta within a wider nucleosynthesis framework
 - Understand which candidate processes are strong enough to produce Ta (v-interactions, thermal excitation in early universe)
- Longest lived metastable state never observed to decay
 - Most extreme case to study nuclear structure spin traps
 - Theory varies on predictions for half-life
 - \circ Variety of transitions possible: β-decay , electron capture (EC), internal conversion, γ-transition, α -decay
 - Ground-state 180 Ta is unstable ($T_{1/2} \sim 8$ hours)

Decay scheme of ^{180m}Ta with possible decay channels (red) and detection signatures (blue)

Variety of physics studies in the Tantalum system

• The origin of Tantalum in the universe:

- Study helps to understand the observed abundance of ^{180m}Ta within a wider nucleosynthesis framework
- Understand which candidate processes are strong enough to produce Ta (v-interactions, thermal excitation in early universe)
- Longest lived metastable state never observed to decay
 - Most extreme case to study nuclear structure spin traps
 - Theory varies on predictions for half-life
 - \circ Variety of transitions possible: β-decay , electron capture (EC), internal conversion, γ-transition, α -decay
 - Ground-state 180 Ta is unstable ($T_{1/2} \sim 8$ hours)
- Search for Dark Matter interaction
 - Additional energy from the isomer allows reaction with particles that would not interact otherwise
 - Candidates: Strongly Interacting DM, Inelastic DM

Decay scheme of ^{180m}Ta with possible decay channels (red) and detection signatures (blue)

What is needed for a measurement...

Previous limits:

PRC 95, 044306 (2017)
2305.17238 (2023)

History of Tantalum decay measurements with predictions (dashed lines), from arxiv 2305.17238

- Large exposure (material and time)
 - only 1 2 ppm of earth's crust is Ta
 - o 99.98% is ¹⁸¹Ta
- Detector with excellent energy resolution
- If possible multiple detectors, that can detect coincidences
- A clean, ultra low-background system and environment

Perfect use of MJD facility after enriched detector removal

MAJORANA DEMONSTRATOR

Searching for neutrinoless double-beta decay of ⁷⁶Ge in HPGe detectors, probing additional physics beyond the standard model, and informing the design of the next-generation LEGEND experiment

Source & Detector:

- Array of p-type, point contact detectors 30 kg of 88% enriched ⁷⁶Ge crystals
- Included 6.7 kg of ⁷⁶Ge inverted coaxial, point contact detectors in final run
- Enriched detectors removed in 2021 for LEGEND
- 14 kg of natural Ge crystals
- Excellent Energy Resolution: 2.5 keV FWHM @ 2039 keV
- Low Analysis Threshold: 1 keV
- Low Background: 2 modules within a compact graded shield and active muon veto using ultra-clean materials
- Final Result, (PRL 130, 062501, 2023)
 - 65 kg-yr exposure
 - \circ Median T_{1/2} Sensitivity: 8.1 × 10²⁵ yr (90% C.I.)
 - \sim Limit: $T_{1/2} > 8.3 \times 10^{25} \text{ yr (90\% C.I)}$

Reconfiguring of the Demonstrator

- **17.4 kg installed** ~ 2 g ^{180m}Ta, (x10 more than best previous measurement)
- 23 active detectors
 (before only one or two detector configurations)
- Detectors and Ta arranged to maximize efficiency
- Operating since May 2022

(left) cleaning and installation in the MJD strings

(right) schematic arrangement of detectors, green, and Ta, grey, and photograph of the full detector array

Data Overview and Analysis

- Data Set of 348 days (98.2% live)
- Background contributions from:
 - natural radioactivity within the Tantalum disks (< 0.5 mBq/kg_{Ta})
 - surface activation in Ta
 - \blacksquare 182Ta (T_{1/2} = 114 days)
 - \blacksquare 175Hf (T_{1/2} = 70 days)
- Background improving over time

A look in a few region of interests

ROI 1200 sidebands best fit 1000 sideband ROI counts 800 600 400 200 200 210 220 230 Energy (keV)

Signal region for deexcitations after β -decay

Signal region for deexcitations after electron capture

182Ta
U/Th decay chain

First year results

Previous limits:
PRC 95, 044306 (2017)
2305.17238 (2023)

Submitted and under review See also arxiv 2306.01965

- Current improvements
 - Efficiency (x 2-3)
 - Mass (x 12)
 - o Background
- multiplicity analysis allows high sensitivity search

$$\lambda_{total} = \lambda_{EC} + \lambda_{\beta^{-}} + \lambda_{\gamma} + \lambda_{IC} + \lambda_{\alpha} + \lambda_{DM}$$

	EC	β-	Y	IC	α
Previous Limits	> 1.6 x 10 ¹⁸	> 1.1 x 10 ¹⁸	> 4.5 x 10 ¹⁴	> 4.5 x 10 ¹⁴	-
MJD - 2023	> 1.3 x 10 ¹⁹ **	> 1.5 x 10 ^{19 **}	> 6.0 x 10 ¹⁷	> 2.9 x 10 ¹⁷	> 1.1 x 10 ^{19 **}
Theory	10 ²³	10 ²⁰	10 ³¹	10 ¹⁸	10 ²⁵

Overview on results, all numbers in years,

** limits derived from detector coincidences

First year results

- Current improvements
 - Efficiency (x 2-3)
 - Mass (x 12)
 - Background
- multiplicity analysis allows high sensitivity search

Dark matter induced deexcitation

- No observation of ^{180m}Ta decay → no DM-induced decay
- Improved sensitivities to strongly interacting DM (siDM)
- Additional sensitivities to more complex DM with multiple states
- and/or particles via inelastic scattering

Dark matter induced deexcitation

- No observation of ^{180m}Ta decay → no DM-induced decay
- Improved sensitivities to strongly interacting DM (siDM)
- Additional sensitivities to more complex DM with multiple states
- and/or particles via inelastic scattering

Improvements by
two orders
of magnitude and
complementary to
other searches

Summary

- Most sensitive search for half-life measurements in isomers world-wide
- First data improved previous measurements
 by 1-2 orders of magnitude

Figure taken and updated from 2305.17238

Summary

- Most sensitive search for half-life measurements in isomers world-wide
- First data improved previous measurements
 by 1-2 orders of magnitude
- Background continues to improve
- Estimated final sensitivity has the potential to discover the decay

Figure taken and updated from 2305.17238

