Matter-antimatter asymmetry and dark matter stability from baryon number conservation

Mar Císcar-Monsalvatje

In collaboration with Alejandro Ibarra and Jérôme Vandecasteele

Physik-Department, Technische Universität München, James-Franck-Straße, 85748 Garching, Germany

based on [2307.02592]

TAUP 2023

29.08.2023

Matter-antimatter asymmetry

 We observe an asymmetry between the number of Standard Model particles and antiparticles, measured as

$$Y_B = \frac{n_B - n_{\overline{B}}}{s} = (8.75 \pm 0.23) \times 10^{-11}$$

- Sakharov conditions (1967)
 - Baryon number (B) violation
 - C and CP violation
 - Departure from thermal equilibrium

Matter-antimatter asymmetry

 We observe an asymmetry between the number of Standard Model particles and antiparticles, measured as

$$Y_B = \frac{n_B - n_{\overline{B}}}{s} = (8.75 \pm 0.23) \times 10^{-11}$$

- Sakharov conditions (1967)
 - Baryon number (B) violation
 - C and CP violation
 - Departure from thermal equilibrium

Dark matter

- There is robust evidence for the existence of dark matter
- The relic density is measured: $\Omega_{\rm DM} = 0.265 \pm 0.007$
- The abundance of dark matter is comparable to the abundance of Standard model matter: $\Omega_{\rm DM} \simeq 5\Omega_{\rm SM}$
- We still don't know its nature, it may even carry baryon number

Relation between them

- Natural to consider that the dark sector could also be asymmetric
- The measured dark matter and baryon energy densities today are of the same order of magnitude, which hints of a common origin for both

Relation between them

- Natural to consider that the dark sector could also be asymmetric
- The measured dark matter and baryon energy densities today are of the same order of magnitude, which hints of a common origin for both

- ullet We question the first Sakharov condition about B violation
- Maybe the Universe is baryon-symmetric even if the visible sector is not
- Result: we don't need B violation to do Baryogenesis
- Conditions we need:
 - C violation in the dark sector
 - Departure from thermal equilibrium
 - A portal between the dark sector and the quarks

Dark sector:

$$\mathcal{L} \supset \frac{1}{\Lambda_0} \chi \chi^* \overline{N} N + \frac{1}{\Lambda_2} \left(\chi \chi \overline{N}^c N + h.c. \right)$$

Dark sector:

$$\mathcal{L} \supset \frac{1}{\Lambda_0} \chi \chi^* \overline{N} \, N + \frac{1}{\Lambda_2} \left(\chi \chi \overline{N}^c N + h.c. \right)$$

$$\chi \chi^* \leftrightarrow N\overline{N}$$

$$\chi \chi \leftrightarrow N\overline{N}$$

$$\chi^* \chi^* \leftrightarrow NN$$

$$\chi N \leftrightarrow \chi^* \overline{N}$$

Dark sector:

$$\mathcal{L} \supset \frac{1}{\Lambda_0} \chi \chi^* \overline{N} N + \frac{1}{\Lambda_2} \left(\chi \chi \overline{N}^c N + h.c. \right)$$

$$\begin{array}{ccc} \chi \chi^* \leftrightarrow N \overline{N} & \chi \chi \leftrightarrow \overline{N} \overline{N} \\ \chi^* \chi^* \leftrightarrow N N & \longrightarrow \\ \chi N \leftrightarrow \chi^* \overline{N} & \end{array}$$

wash out

Dark sector:

$$\mathcal{L} \supset \frac{1}{\Lambda_0} \chi \chi^* \overline{N} \, N + \frac{1}{\Lambda_2} \left(\chi \chi \overline{N}^c N + \, h.c. \right)$$

$$\begin{array}{ccc} \chi \chi^* \leftrightarrow N \overline{N} & \chi \chi \leftrightarrow \overline{N} \overline{N} \\ \chi^* \chi^* \leftrightarrow N N & \longrightarrow \\ \chi N \leftrightarrow \chi^* \overline{N} & \end{array}$$

Strong

Weak

wash out

N

Dark sector:

$$\mathcal{L} \supset \frac{1}{\Lambda_0} \chi \chi^* \overline{N} N + \frac{1}{\Lambda_2} \left(\chi \chi \overline{N}^c N + h.c. \right)$$

$$\chi \chi^* \leftrightarrow N \overline{N}$$
 $\chi \chi \leftrightarrow N \overline{N} \overline{N}$ $\chi^* \chi^* \leftrightarrow N N$ $\chi N \leftrightarrow \chi^* \overline{N}$ Strong Weak

Strong

wash out

Neutron portal:

$$\mathcal{L}\supsetrac{1}{\Lambda_{n}^{2}}\left(\overline{N}d_{R}\overline{u_{R}^{c}}d_{R}+h.c
ight)$$

Neutron portal $N \leftrightarrow udd$

$$\delta m = 1.4 \times 10^{-8} \left(\frac{10^3 \text{ GeV}}{\Lambda_n} \right)^2 \text{ GeV}$$

Mass mixing $\delta m \overline{N} n$

Dynamics

• We write down the system of Boltzmann equations for all the particles in the dark sector and the asymmetry in the visible sector.

Dynamics

• We write down the system of Boltzmann equations for all the particles in the dark sector and the asymmetry in the visible sector.

Dynamics

• We write down the system of Boltzmann equations for all the particles in the dark sector and the asymmetry in the visible sector.

We find that for

$$\begin{cases} \Lambda_2 \gtrsim 10^{10}\,{\rm GeV},\\ \Lambda_0 \lesssim 10^4\,{\rm GeV},\\ \Lambda_n\,{\rm compatible} \text{ with experiments,} \end{cases}$$

correct visible asymmetry, correct DM abundance, asymmetry transmitted before BBN.

29.08.2023

Constraints

Dark matter

- We don't expect signals from direct or indirect detection, due to the high suppression of the involved processes. (see back-up slide)
- Possibility to detect dark matter via a Higgs portal is open.

Constraints

Dark matter

- We don't expect signals from direct or indirect detection, due to the high suppression of the involved processes. (see back-up slide)
- Possibility to detect dark matter via a Higgs portal is open.

Neutron portal

Detection prospects with interesting signals!

- Impacts the cosmological history [Allahverdi et al. 2108.13136]
- Could be probed in colliders
- Well defined window in parameter space

Conclusions

- We proposed a novel scenario where we solve both the DM and quark-antiquark asymmetry questions without baryon number violation.
- We predict a thermal, light DM candidate with highest mass possible of 5 GeV, the stability of which follows naturally and is linked to the quark-antiquark asymmetry.
- We have viable prospects for probing the particles in the Neutron Portal. The parameter space has a defined and constrained window.
- Next: we are working on providing an explicit realization for this scenario
 in a UV complete model, for which the asymmetry within the dark sector is
 generated by a leptogenesis-inspired mechanism.

Thank you for your attention!

Direct detection of DM

Very suppressed due to small mixing δm

Transmutes a neutron into an antineutron

Neutron stars don't help...

Indirect detection of DM

Full Boltzmann equations solutions

Generation of the initial condition

Introducing φ_1 and φ_2 , Majorana fermions with B=0

If sphalerons are efficient at $T_{\rm in}$

Initial condition:

If sphalerons are efficient at $T_{\rm in}$

Today:

Asymmetry redistribution

	Assymetry is generated	Spalerons and neutron portal active	N decay away (Sphalerons off)
χ	$Y_{\Delta\chi}$	$Y_{\Delta\chi}$	$Y_{\Delta\chi}$
\overline{N}	$Y_{\Delta\chi}$	$\frac{42}{79}Y_{\Delta\chi}$	0
$B_{\rm SM}$	0	$\frac{12}{79}Y_{\Delta\chi}$	$\frac{54}{79}Y_{\Delta\chi}$
$L_{\rm SM}$	0	$-\frac{25}{79}Y_{\Delta\chi}$	$-\frac{25}{79}Y_{\Delta\chi}$

 $m_{\mathrm{DM}} \simeq 3.4\,\mathrm{GeV}$

Neutron portal constraints (with sphalerons)

Full Boltzmann equations solutions (with sphalerons)

