

XVII International Conference on Topics in Astroparticle and Underground Physics

Kaon Quenching Studies to Improve JUNO's Sensitivity to Proton Decay

ULRIKE FAHRENDHOLZ* on behalf of the **JUNO** collaboration

* Chair for Experimental and Astroparticle Physics E15, School of Natural Sciences, TUM James-Franck-Str. 1, 85748 Garching, Germany

August 29th 2023 Neutrino physics and astrophysics 3B

Baryogenesis under the Sakharov conditions:

- Baryon number B violation
- C-symmetry and CP-symmetry violation
- Thermodynamic nonequilibrium

Standard model:

Effectively conserves B

Baryogenesis under the Sakharov conditions:

- Baryon number B violation
- C-symmetry and CP-symmetry violation
- Thermodynamic nonequilibrium

Standard model:

Effectively conserves B

- Conversion reactions between quarks and leptons become possible
- Gauge coupling unification scale typically at the order of 10¹⁵ GeV

Test GUT predictions via nucleon decay search

Baryogenesis under the Sakharov conditions:

- Baryon number B violation
- C-symmetry and CP-symmetry violation
- Thermodynamic nonequilibrium

Standard model:

Effectively conserves B

Grand Unified Theories (GUTs):

- Conversion reactions between quarks and leptons become possible
- Gauge coupling unification scale typically at the order of 10¹⁵ GeV

Test GUT predictions via nucleon decay search

$$p \rightarrow e^+ + \pi^0$$

- Favored by non-SUSY GUTs
- Current best limit $\tau(p \to e^+\pi^0) > 2.4 \times 10^{34}$ yr with 90 % C.L. from Super-Kamiokande

$$\mathbf{p} \to \mathbf{K}^+ + \overline{\mathbf{v}}$$

- Favored by SUSY GUTs
- Current best limit $\tau(p \to K^+ \bar{\nu}) > 5.9 \times 10^{33}$ yr with 90 % C.L. from Super-Kamiokande

Current best limit from Super-Kamiokande: $\tau(p \to K^+ \overline{\nu}) > 5.9 \times 10^{33}$ yr with 90 % C.L.

K. Abe et al., Phys. Rev. D 90, 072005

Current best limit from Super-Kamiokande: $\tau(p \to K^+ \overline{\nu}) > 5.9 \times 10^{33}$ yr with 90 % C.L.

K. Abe et al., Phys. Rev. D 90, 072005

- The kaon is emitted at energies below the Cerenkov threshold
- Invisible in a water Cerenkov detector
 - ⇒ Event selection via the kaon daughters and gamma tagging of nuclear deexcitations.
- → Visible in liquid scintillator

$$p \rightarrow K^+ + \overline{\nu}$$

Current best limit from Super-Kamiokande: $\tau(p \to K^+ \overline{\nu}) > 5.9 \times 10^{33}$ yr with 90 % C.L.

K. Abe et al., Phys. Rev. D 90, 072005

- The kaon is emitted at energies below the Cerenkov threshold
- Invisible in a water Cerenkov detector
 - ⇒ Event selection via the kaon daughters and gamma tagging of nuclear deexcitations.
- → Visible in liquid scintillator

With its large target mass and long runtime, the JUNO experiment is in a great position to search for this decay.

What is JUNO?

What is JUNO?

Jiangmen Undergound Neutrino Observatory

What is JUNO?

Jiangmen Undergound Neutrino Observatory

The physics program also includes:

- Determination of the neutrino mass ordering
- High precision oscillation parameters
- Diffuse supernova neutrino background
- Studies on solar, atmospheric, supernova, geo- and reactorneutrinos

Well-defined threefold event structure with known emission timing and particle energies!

Cosmic muons:

- Exclude 99 % of cosmic muon events with VETO systems
- Require a triple coincidence among the visible energy and volume selection for last 1 %

Cosmic muons:

- Exclude 99 % of cosmic muon events with VETO systems
- Require a triple coincidence among the visible energy and volume selection for last 1 %

Atmospheric neutrino events:

- Possible interactions: CCQE, NCES, pion and kaon production
- CCQE and NCES produce single pulses
 - excluded by requiring triple event structure
- Pion production results in an approximate single pulse
 - energetic neutron production could mimic double peak
 - exclude large numbers of neutron capture events
- Kaon production leads to a double-peak structure
 - very unlikely in relevant energy range

Basic event selection:

- Visible energy cut
- Time window for VETO system
- Volume selection

Other:

- One/two Michel electron(s)
- Tagged neutron number
- Distances from decay position

Basic event selection:

- Visible energy cut
- Time window for VETO system
- Volume selection

Other:

- One/two Michel electron(s)
- Tagged neutron number
- Distances from decay position

Proton Decay Event with Long Kaon Lifetime

Basic event selection:

- Visible energy cut
- Time window for VETO system
- Volume selection

Other:

- One/two Michel electron(s)
- Tagged neutron number
- Distances from decay position

Basic event selection:

- Visible energy cut
- Time window for VETO system
- Volume selection

Other:

- One/two Michel electron(s)
- Tagged neutron number
- Distances from decay position

Basic event selection:

- Visible energy cut
- Time window for VETO system
- Volume selection

Other:

- One/two Michel electron(s)
- Tagged neutron number
- Distances from decay position

Multi-pulse:

- Correlated time difference
- Fit with a double-peak and a single-peak model
- Ratio of the obtained χ^2
- Reconstructed energy of the double-peak components

What is JUNO's sensitivity currently?

What is JUNO's sensitivity currently?

- The expected detection efficiency is 36.9 % with a background level of 0.2 in ten years of data taking.
- For no observed decays and an exposure of 200 kton years, JUNO's estimated sensitivity is 9.6×10^{33} years at 90 % C.L.

What is JUNO's sensitivity currently?

- The expected detection efficiency is 36.9 % with a background level of 0.2 in ten years of data taking.
- For no observed decays and an exposure of 200 kton years, JUNO's estimated sensitivity is 9.6×10^{33} years at 90 % C.L.

More information in

The JUNO Collaboration (2023)
Juno Sensitivity on Proton Decay
p2Kv Searches

The proton decay event selection relies strongly on the shape of the kaon-daughter signal, including the reconstructed energies of both particles.

The proton decay event selection relies strongly on the shape of the kaon-daughter signal, including the reconstructed energies of both particles.

Birks' law:

$$\frac{dY}{dx} = LY \cdot \frac{dE/dx}{1 + kB \cdot dE/dx}$$

Relates the deposited energy to the emitted light yield via the Birks' constant kB and a prefactor LY.

The proton decay event selection relies strongly on the shape of the kaon-daughter signal, including the reconstructed energies of both particles.

Birks' law:

$$\frac{dY}{dx} = LY \cdot \frac{dE/dx}{1 + kB \cdot dE/dx}$$

Relates the deposited energy to the emitted light yield via the Birks' constant kB and a prefactor LY.

Quenching:

Different particle types with the same specific energy deposition produce **different amounts of scintillation light** due to ionization effects. The **Birks' constant kB** accounts for the quenching probability and the local density of ionized molecules and needs to be determined **experimentally**.

How to measure kaon quenching?

How to measure kaon quenching?

Specific energy loss dE/dx [MeV/m]

Illustrational plot with exaggerated Birks' factors for the different particle species

- Measure light output and deposited energy independently
 - The measured results then correspond to the integral of the Birks' curve.

How to measure kaon quenching?

Specific energy loss dE/dx [MeV/m]

Illustrational plot with exaggerated Birks' factors for the different particle species

- Measure light output and deposited energy independently
 - The measured results then correspond to the integral of the Birks' curve.
- Reconstruct Birks' curve by using different inertial energies and energy depositions

How to measure kaon quenching?

Specific energy loss dE/dx [MeV/m]

Illustrational plot with exaggerated Birks' factors for the different particle species

- Measure light output and deposited energy independently
- The measured results then correspond to the integral of the Birks' curve.
- Reconstruct Birks' curve by using different inertial energies and energy depositions
- Too short kaon lifetime for beams
- Use muon, pion and proton beams
- Extrapolate kaon light emission behavior

What is the working principle of UniKaon?

What is the working principle of UniKaon?

How is the setup designed?

Particle beams:

- Proton beams around 200 MeV
- Muon beams around 25 MeV
- If available: Pion beams around 30 MeV

How is the setup designed?

1 LS vessel

- Lengths from 10 cm to 30 cm
- Ultra-thin beam entry windows
- Low gain PMTs

Particle beams:

- Proton beams around 200 MeV
- Muon beams around 25 MeV
- If available: Pion beams around 30 MeV

How is the setup designed?

Particle beams:

- Proton beams around 200 MeV
- Muon beams around 25 MeV
- If available: Pion beams around 30 MeV

LS vessel

- Lengths from 10 cm to 30 cm
- Ultra-thin beam entry windows
- Low gain PMTs

2

ToF detector

- Conic fast-timing plastic scintillator
- Fast-timing PMT
- Lightproof housing
- Ultra-thin beam entry window

A 20 cm prototype was successfully operated at a neutron beamtime in Legnaro, Italy.

A 20 cm prototype was successfully operated at a neutron beamtime in Legnaro, Italy.

Laboratory:

- New liquid tight vessel construction
- First PMT gain calibration completed
- All liquid scintillator vessels are calibrated with different configurations of applied mirror foil and changing PMT positions as input to the simulation

A 20 cm prototype was successfully operated at a neutron beamtime in Legnaro, Italy.

Laboratory:

- New liquid tight vessel construction
- First PMT gain calibration completed
- All liquid scintillator vessels are calibrated with different configurations of applied mirror foil and changing PMT positions as input to the simulation

Simulation:

- First simulation of the prototype under beamtime conditions
- Full light propagation simulation to account for geometry effects in work

JUNO:

- Acrylic vessel and PMT arrays under construction
- First data taking expected in 2024
- Ongoing efforts to enhance event selection for proton decay

JUNO:

- Acrylic vessel and PMT arrays under construction
- First data taking expected in 2024
- Ongoing efforts to enhance event selection for proton decay

Kaon Quenching Influence on Event Selection:

- Ongoing Master thesis on proton decay backgrounds
- Studies on the influence of the kaon quenching on the signal shape in JUNO

JUNO:

- Acrylic vessel and PMT arrays under construction
- First data taking expected in 2024
- Ongoing efforts to enhance event selection for proton decay

Kaon Quenching Influence on Event Selection:

- Ongoing Master thesis on proton decay backgrounds
- Studies on the influence of the kaon quenching on the signal shape in JUNO

UniKaon:

- Ongoing LS detector characterization to study light propagation behavior
- Input results to simulation
- Gain calibration of PMTs at high photon yields
- Proton beamtime expected in winter

JUNO:

- Acrylic vessel and PMT arrays under construction
- First data taking expected in 2024
- Ongoing efforts to enhance event selection for proton decay

Kaon Quenching Influence on Event Selection:

- Ongoing Master thesis on proton decay backgrounds
- Studies on the influence of the kaon quenching on the signal shape in JUNO

UniKaon:

- Ongoing LS detector characterization to study light propagation behavior
- Input results to simulation
- Gain calibration of PMTs at high photon yields
- Proton beamtime expected in winter

Thank you for your attention!