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Grand Unified Theories (GUTs):

• Conversion reactions between quarks and leptons become possible

• Gauge coupling unification scale typically at the order of 1015 GeV

Standard model: 
Effectively conserves B

Test GUT predic-

tions via nucleon

decay search

𝐩 → 𝐞+ + 𝛑𝟎

• Favored by non-SUSY GUTs

• Current best limit 𝜏 𝑝 → 𝑒+𝜋0 > 2.4 × 1034

yr with 90 % C.L. from Super-Kamiokande

𝐩 → 𝐊+ + ഥ𝝂

• Favored by SUSY GUTs

• Current best limit 𝜏 𝑝 → 𝐾+ ҧ𝜈 > 5.9 × 1033 yr 

with 90 % C.L. from Super-Kamiokande
K. Abe et al., Phys. Rev. D 90, 072005A. Takenaka et al., Phys. Rev. D 102, 112011
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Current best limit from Super-Kamiokande: 

𝝉 𝒑 → 𝑲+ഥ𝝂 > 𝟓. 𝟗 × 𝟏𝟎𝟑𝟑 yr with 90 % C.L.

With its large target mass and long runtime, the 

JUNO experiment is in a great position to search 

for this decay.

K. Abe et al., Phys. Rev. D 90, 072005

• The kaon is emitted at energies below the

Cerenkov threshold

• Invisible in a water Cerenkov detector

Event selection via the kaon daughters and

gamma tagging of nuclear deexcitations.

• Visible in liquid scintillator
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Jiangmen Undergound Neutrino Observatory

The physics program also includes:

• Determination of the neutrino 

mass ordering

• High precision oscillation para-

meters

• Diffuse supernova neutrino 

background

• Studies on solar, atmospheric, 

supernova, geo- and reactor-

neutrinos

Overburden: 1800 m.w.e 

Top tracker

Cerenkov water pool

∅ 36m acrylic vessel

20 kton Organic Liquid Scintillator

~ 40,000 PMTs

Stainless steel holding structure



What is the proton decay signal in JUNO?

5



What is the proton decay signal in JUNO?

5

Time

#
 o

f
P
E

p → തν + 𝐊+



What is the proton decay signal in JUNO?

5

Time

#
 o

f
P
E

p → തν + 𝐊+ 𝛍 + νμ

12 ns



What is the proton decay signal in JUNO?

5

Time

#
 o

f
P
E

p → തν + 𝐊+

𝐞+

+ νμ
+ νe

2.2 µs

𝛍 + νμ

12 ns



What is the proton decay signal in JUNO?

5

Time

#
 o

f
P
E

p → തν + 𝐊+

𝐞+

+ νμ
+ νe

2.2 µs

𝛍 + νμ

12 ns
1Hത𝛎 𝐊+

Ekin = 339 MeV Ekin = 105 MeV

Free proton decay:

Bound proton decay:

𝐊+

p
ത𝛎

Ebind
s = 37 MeV

Ebind
p

= 16 MeV

pFermi
max

= 250 MeV/c 

Ekin = 25.1 –

207.2 MeV

12C



What is the proton decay signal in JUNO?

5

Time

#
 o

f
P
E

p → തν + 𝐊+

𝐞+

+ νμ
+ νe

2.2 µs

𝛍 + νμ

12 ns
1Hത𝛎 𝐊+

Ekin = 339 MeV Ekin = 105 MeV

Free proton decay:

Bound proton decay:

𝐊+

p
ത𝛎

Ebind
s = 37 MeV

Ebind
p

= 16 MeV

pFermi
max

= 250 MeV/c 

Ekin = 25.1 –

207.2 MeV

12C

Well-defined threefold event structure with known

emission timing and particle energies!
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100 MeV10 MeV1 MeV 1 GeV

Proton Decay

Atmospheric neutrinos      ~30k in 10 years

IBD

Cosmic Muon

Cosmic muons:

• Exclude 99 % of cosmic muon

events with VETO systems

• Require a triple coincidence

among the visible energy and

volume selection for last 1 %

Atmospheric neutrino events:

• Possible interactions: CCQE, NCES, pion and kaon production

• CCQE and NCES produce single pulses

excluded by requiring triple event structure

• Pion production results in an approximate single pulse

energetic neutron production could mimic double peak

exclude large numbers of neutron capture events

• Kaon production leads to a double-peak structure

very unlikely in relevant energy range
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Basic event selection:
• Visible energy cut

• Time window for VETO system

• Volume selection

Other:
• One/two Michel electron(s)

• Tagged neutron number

• Distances from decay position Multi-pulse:
• Correlated time difference

• Fit with a double-peak and a single-peak model

• Ratio of the obtained χ2

• Reconstructed energy of the double-peak components
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sitivity is 9.6 × 1033 years at 90 % C.L.
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SuperK Limit

More information in
The JUNO Collaboration (2023)

Juno Sensitivity on Proton Decay

p2Kv Searches

• The expected detection efficiency is 36.9 %

with a background level of 0.2 in ten years

of data taking.

• For no observed decays and an exposure of

200 kton • years, JUNO‘s estimated sen-

sitivity is 9.6 × 1033 years at 90 % C.L.
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Quenching:
Different particle types with the same specific energy deposition produce different amounts of 

scintillation light due to ionization effects. The Birks’ constant kB accounts for the quenching 

probability and the local density of ionized molecules and needs to be determined experimentally.
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UniKaon

Kinetic energy

kB

Illustrational plot with exaggerated Birks‘ factors for the different
particle species

• Measure light output and deposited

energy independently

The measured results then corres-

pond to the integral of the Birks‘

curve.

• Reconstruct Birks‘ curve by using

different inertial energies and energy

depositions

• Too short kaon lifetime for beams

Use muon, pion and proton beams

• Extrapolate kaon light emission

behavior
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UniKaon

2

1

PS

PMT
Beam

LS

PMTs

a

b

1 LS vessel

• Lengths from 10 cm

to 30 cm

• Ultra-thin beam en-

try windows

• Low gain PMTs

2 ToF detector

• Conic fast-timing

plastic scintillator

• Fast-timing PMT

• Lightproof housing

• Ultra-thin beam en-

try window

Particle beams:
• Proton beams around 200 MeV

• Muon beams around 25 MeV

• If available: Pion beams around 30 MeV
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UniKaon

Laboratory:
• New liquid tight vessel construction

• First PMT gain calibration completed

• All liquid scintillator vessels are calibrated with

different configurations of applied mirror foil and

changing PMT positions as input to the simulation

A 20 cm prototype was successfully 

operated at a neutron beamtime in 

Legnaro, Italy.  

Simulation:
• First simulation of the prototype under

beamtime conditions

• Full light propagation simulation to

account for geometry effects in work
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JUNO:

• Acrylic vessel and PMT arrays under

construction

• First data taking expected in 2024

• Ongoing efforts to enhance event

selection for proton decay

Kaon Quenching Influence on

Event Selection:

• Ongoing Master thesis on proton

decay backgrounds

• Studies on the influence of the kaon

quenching on the signal shape in

JUNO

UniKaon:

• Ongoing LS detector characterization

to study light propagation behavior

• Input results to simulation

• Gain calibration of PMTs at high

photon yields

• Proton beamtime expected in winter

Thank you for your attention!
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