

Lepton Flavour Violation and DM constraints in a radiative seesaw model

Tetsuo Shindou (Kogakuin University)

O. Seto, T.S., and T. Tsuyuki, 2211.10059 (to be published in PRD)

Physics Beyond the Standard Model

The Standard Model is <u>a successful model</u> for the elementary particle physics

All the particles contained in the SM have been discovered.

But there are a few problems which the SM cannot solve

- What is the origin of tiny neutrino masses?
- Baryogenesis?
- What is the Dark Matter?
- Inflation?
- Charge Quantization?

The SM should be extended at some energy scale

Physics Beyond the Standard Model

The Standard Model is <u>a successful model</u> for the elementary particle physics

All the particles contained in the SM have been discovered.

But there are a few problems which the SM cannot solve

- What is the origin of tiny neutrino masses? <</p>
- Baryogenesis?
 Leptogenesis
- What is the Dark Matter?
- Inflation?
- Charge Quantization?
- • •

The SM should be extended at some energy scale

KNT model

KNT model is a radiative seesaw model

L. Krauss, S. Nasri, and M. Trodden, PRD67, 085002 (2003)

	SU(3)	SU(2)	U(1)	Z_2
N_i	1	1	0	_
S_1^+	1	1	1	+
S_2^-	1	1	_1	_

- Tiny neutrino mass
- ullet N_1 is a Dark matter candidate

 m_{ν} is generated at the three loop level

All the dimensionless couplings are less than one

The mass scale M have an upper limit

$$M < \mathcal{O}(100 \text{ TeV})$$

DM and LFV

O. Seto, TS, T. Tsuyuki, PRD105, 095018(2022) The annihilation of the DM:
$$\langle \sigma v \rangle \simeq \frac{m_{N_1}^2 (m_{N_1}^4 + m_{S_2}^4)}{8\pi (m_{N_1}^2 + m_{S_2}^2)^4} \frac{1}{x_f} \left[\sum_i g_{1i} \right]^{\frac{1}{2}}$$

 $x_f \sim 1/20$

DM abundance is $\Omega_{N_1} h^2 \simeq 0.12 \frac{2.9 \times 10^{-9} \text{ GeV}^{-2}}{}$

Let us consider a constraint $|g_{1i}| < 1$

To avoid too large B($\mu \to e \gamma$), $g_{1\rho}^* g_{1\mu} \simeq 0$ is required

More than 3 g_{1i} are needed

More than $2 g_{1i}$ are needed

 $\tau \to \mu \gamma$ or $\tau \to e \gamma$ can be significantly enhanced One g_{1i} is enough-

DM in the KNT

In the case with $g_{1e} = g_{1\mu} = 0$

The scenario can be explored by future lepton collider experiments.

Leptogenesis in the KNT model

How about the Baryogenesis in the KNT model?

Possibility of the thermal leptogenesis

The Lepton asymmetry is produced by N_2 decay: $N_2 \to S_2^- + e_{Ri}^+ \xrightarrow{\text{CP}} N_2 \to S_2^+ + e_{Ri}^-$

The Lepton asymmetry \rightarrow #B via Sphaleron $Y_B = \frac{n_B}{s} = -\frac{32}{89}Y_{e_R}$

The Spharelon is in the thermal bath at $T_* \le T \le 10^{12} \text{GeV}$

$$T_c = (159 \pm 1) \text{GeV}$$
 and $T_* = (131.7 \pm 2.3) \text{GeV}$

M. D'Onofrio, K. Rummukainen, A. Tranberg, PRL113,141602(2014)

We should check whether the sceario can produce enough baryon asymmetry If not, what kind of model extension is necessary?

Some issues in the scenario

• $Y_{S_2} = -Y_{e_R}$ The late-time decay of S_2^{\pm} washes out #L $N_2 \to S_2^{\mp} + e_{Ri}^{\pm}$ Sphaleron should decoupled before S_2^{\pm} decay is completed $\searrow N_1 + e_{Rj}^{\mp}$

 m_{S_2} cannot be much larger than T_st

- $|g_{2i}|\simeq\mathcal{O}(10^{-6})$ is required for $N_{N_2}\neq N_{N_2}^{\rm eq}$ at $T\sim M_2$ $N_2 \text{ cannot contribute to } M_\nu$
- Washout by $\Delta L = 2$ scattering is significant

$$zH\frac{N_{N_2}}{dz} = -(\Gamma_D + \Gamma_S)(N_{N_2} - N_{N_2}^{\text{eq}})$$

$$zH\frac{N_{N_{B-L}}}{dz} = -\epsilon_2\Gamma_D(N_{N_2} - N_{N_2}^{\text{eq}}) - \Gamma_W N_{B-L}$$

$$S_2^+$$
, S_2^+ , S

— Inverse decay & Scattering

Nuetrino mass matrix with $g_{2i} \ll 1$

 N_2 cannot play a role in $m_{
u}$

$$M_{\nu} \simeq \frac{\lambda_{S}}{4(4\pi)^{3}m_{S_{1}}} \begin{pmatrix} 0 & h_{12} & h_{13} \\ -h_{12} & 0 & h_{23} \\ -h_{13} & -h_{23} & 0 \end{pmatrix} \begin{pmatrix} m_{e} & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau} \end{pmatrix} g^{T} \begin{pmatrix} f_{1} & 0 \\ 0 & f_{3} \end{pmatrix} g \begin{pmatrix} m_{e} & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau} \end{pmatrix} \begin{pmatrix} 0 & -h_{12} & -h_{13} \\ h_{12} & 0 & -h_{23} \\ h_{13} & h_{23} & 0 \end{pmatrix}$$

Loop function
$$f_a = (M_a^2/m_{S_2}^2, m_{S_1}^2/m_{S_2}^2) \lesssim 1$$

Only N_3 contributes to m_{ν}

A simple example: To avoid $au o \mu \gamma$

$$g = \begin{pmatrix} 0 & g_{13} \\ 0 & g_{32} \end{pmatrix} \qquad DM$$

$$\nu\text{-osc}$$

Negligible contribution to $M_{
u}$

It tends to cause dangerous $\mu \to e \gamma$

O. Seto, TS, T. Tsuyuki, PRD105, 095018(2022)

We can reproduce an appropriate m_{ν}

Four generations RHN

O. Seto, <u>T.S.</u>, and T. Tsuyuki, 2211.10059v2

$$m_{\nu} \longrightarrow g_{32}$$
 and g_{33} are large $\longrightarrow \ell_i^{\pm}\ell_j^{\pm} \to S_2^{\pm}S_2^{\pm}$ ($\ell_{i,j} = \tau \text{ or } \mu$) is fast $\Delta_{\tau} + \Delta_{\mu}$ is washed out too fast

To produce Δ_e , large g_{31} is necessary,

but the washout also becomes significant and ${\rm Br}(\mu o e \gamma)$ is too large

We need a fourth RHN for successful leptogenesis!

A benchmark example

$$g = \begin{pmatrix} 0 & 0 & g_{13} \\ g_{21} & 0 & 0 \\ 0 & g_{32} & g_{33} \\ g_{41} & 0 & 0 \end{pmatrix}$$

Parameter	Value		
$\overline{m_{S_1}}$	$2.33 \times 10^4 \text{ GeV}$		
$\overline{m_{S_2}}$	Scanned in $[100, 350]$ GeV		
m_{N_1}	Depending on m_{S_2}		
m_{N_2}	Scanned in $[100, 500]$ GeV		
m_{N_3}	$3.67 \times 10^6 \text{ GeV}$		
$\overline{m_{N_4}}$	$1.0 \times 10^8 \text{ GeV}$		
$\overline{\lambda_S}$	1.0		
(h_{12}, h_{23}, h_{13})	$(0.600e^{-0.0480i}, 1.0, 0.329e^{0.102i})$		
$(g_{13}, g_{32}, g_{33}, g_{41})$	(1.0, 1.0, -0.053, 0.1)		
$ g_{21} $	Depending on m_{N_2}		
$arg(g_{21})$	$\pi/4$		

Evolutions of Y_{B-L}

O. Seto, <u>T.S.</u>, and T. Tsuyuki, 2211.10059v2

Before N_2 decay is frozen, #B is frozen by sphaleron decoupling. \longrightarrow NEW SCENARIO!

Scanning of m_{S_2} and M_2

In the wide range of the mass parameters, enough $Y_{\cal B}$ can be produced.

 $m_{S_2} \sim \mathcal{O}(100) \text{GeV}$ is predicted.

Summary

- We considered a leptogenesis scenario in the KNT model
 - Three RHN case does not work because of too strong washout by $\Delta L=2$ scattering processes.
 - A case with the fourth-generation RHN provides enough large baryon asymmetry!
 - $m_{S_2} = \mathcal{O}(100) \text{GeV}$ is preferred by both DM and Leptogenesis
 - $^{\circ}$ A good benchmark for complementarity of ν , cosmology, flavour and collider.
 - $^{\circ}$ We propose a new scenario for a leptogenesis at $T\sim 100{
 m GeV}$
- Constructing a UV picture of the model will be future work.

Backup

An idea of thermal Leptogenesis

Spharelon

An unstable static solution to EOM in the SU(2) gauge theory.

Spharelon leads to the effective operator $O_{B+L} = \Pi_i (q_{Li} q_{Li} q_{Li} \ell_{Li})$

B+L is violated due to the vacuum structure, while B-L is conserved

The Spharelon is in the thermal bath at $T_* \le T \le 10^{12} \text{GeV}$

$$T_c = (159 \pm 1) \text{GeV}$$
 and $T_* = (131.7 \pm 2.3) \text{GeV}$

M. D'Onofrio, K. Rummukainen, A. Tranberg, 1404.3565

Heavy neutrino decay

CP violating decay can produce Lepton number(#B-L)

RNH is a Majorana particle \longrightarrow $N_1 = N_1^c$

#B

Sphareron

 $\log(T)$

 $\log(t)$

If CP is violated, $\Gamma(N_1 \to \ell_L + H) \neq \Gamma(N_1 \to \ell^c + H^*)$

Loop functions

Upper limit on m_{S}

 $(M_{\nu})_{\tau\tau}$ gets the strongest suppression by m_{μ}^2 $n_{\rm eff}$ is the number of the Large couplings are required

 N_i with $f(x_I, y) \sim 1.05$ and $g_{I2} \sim 1$

We get the upper limit on m_{S_1}

$$m_{S_1} < 7.39 \times 10^4 \text{ GeV} \left(\frac{0.02 \text{ eV}}{|(M_{\nu})_{\tau\tau}|}\right) |h_{23}|^2 n_{\text{eff}}$$

How is the LFV constraint?

Depends on the oscillation parameters and Majorana CP phase

Flavour Structure of the KNT

$$m{M}_{m{
u}} = rac{\lambda_S}{4(4\pi)^3 m_{S_1}} m{h} egin{pmatrix} m_e & 0 & 0 \ 0 & m_{\mu} & 0 \ 0 & 0 & m_{ au} \end{pmatrix} m{g}^T egin{pmatrix} f_1 & 0 & 0 \ 0 & f_2 & 0 \ 0 & 0 & f_3 \end{pmatrix} m{g} egin{pmatrix} m_e & 0 & 0 \ 0 & m_{\mu} & 0 \ 0 & 0 & m_{ au} \end{pmatrix} m{h}^T$$

$$\sim m{h} egin{pmatrix} m_e & 0 & 0 \ 0 & m_{\mu} & 0 \ 0 & 0 & m_{ au} \end{pmatrix} m{X} egin{pmatrix} m_e & 0 & 0 \ 0 & m_{\mu} & 0 \ 0 & 0 & m_{ au} \end{pmatrix} m{h}^T$$

In this case, we can use the following relations

Y. Irie, O. Seto, <u>TS</u>, Phys. Lett. B820, 136486(2021)

$$k \equiv \frac{h_{12}}{h_{23}} = \frac{(M_{\nu})_{e\mu}(M_{\nu})_{\mu\tau} - (M_{\nu})_{e\tau}(M_{\nu})_{\mu\mu}}{(M_{\nu})_{\mu\mu}(M_{\nu})_{\tau\tau} - (M_{\nu})_{\mu\tau}^2}$$
$$k' \equiv \frac{h_{13}}{h_{23}} = \frac{(M_{\nu})_{e\mu}(M_{\nu})_{\tau\tau} - (M_{\nu})_{e\tau}(M_{\nu})_{\mu\tau}}{(M_{\nu})_{\mu\mu}(M_{\nu})_{\tau\tau} - (M_{\nu})_{\mu\tau}^2}$$

Constraints from the LFV

We focus on the S_1^{\pm} contribution

$$Br(\mu \to e\gamma) \simeq \frac{\alpha^2}{768\pi G_F^2 m_{S_1}^4} |h_{13}h_{23}^*|^2$$

$$m_{S_1} < 7.39 \times 10^4 \text{ Gev } \left(\frac{0.02 \text{ eV}}{|(M_{\nu})_{\tau\tau}|}\right) |h_{23}|^2 n_{\text{eff}}$$

Br(
$$\mu \to e\gamma$$
) > 7.45 × 10⁻¹⁶ $\frac{|h_{13}|^2}{|h_{23}|^6 n_{\text{eff}}} \left(\frac{(M_{\nu})_{\tau\tau}}{0.02 \text{ eV}}\right)$

For Normal Ordering (NO) $m_1 < m_2 < m_3$

$$k' \equiv \frac{h_{13}}{h_{23}} \sim 0.3 < 1 \text{ leads to } h_{13} < h_{23} \leq 1 \implies \text{Br}(\mu \to e \gamma) > 5.0 \times 10^{-18} \left(\frac{|(M_\nu)_{\tau\tau}|}{0.02 \text{ eV}}\right)^4 \left(\frac{n_{\text{eff}}}{2}\right)^{-4} \left(\frac{|k'|}{0.329}\right)^2$$

For Inverted Ordering (IO) $m_3 < m_1 < m_2$

$$k' \sim 5 > 1$$
 leads to $h_{23} < h_{13} \le 1$

Br(
$$\mu \to e\gamma$$
) > 7.4 × 10⁻¹³ $\left(\frac{|(M_{\nu})_{\tau\tau}|}{0.02 \text{ eV}}\right)^4 \left(\frac{n_{\text{eff}}}{2}\right)^{-4} \left(\frac{|k'|}{5.01}\right)^6$

Significant!

Experimental constraint:Br($\mu \rightarrow e\gamma$) < 4.2 × 10⁻¹³

The constraints on the model in the IO case

O. Seto, <u>TS</u>, T. Tsuyuki, arXiv:2202.00931

