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Background

* Dark energy comprises the largest portion of
energy in the universel

* |ts simplest description is given by a
cosmological constant
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1. Planck Collab. 2018 Results VI, Astron. Astrophys.641, A6 (2020),[arXiv:1807.06209].



Background

V(o)

* A might be assosciated with the zero point

energy of quantum fields, but there is a

discrepancy of ~ 55-60 orders of magnitude?3
* Alternatively, dark energy could be due to a

slowly rolling scalar field
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2. JOYCE, Austin, et al. Beyond the cosmological standard model. Physics Reports, 2015, 568. Jg., S. 1-98.
3. Sola, Joan. "Cosmological constant and vacuum energy: old and new ideas." Journal of Physics: Conference Series. Vol. 453. No. 1. IOP Publishing, 2013



Background

* These scalar fields generically lead to fifth forces S
in the solar system |

* Some screening mechanism* should be present,
in order to explain the null results from solar
system tests
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4. Burrage, Clare, and Jeremy Sakstein. "Tests of chameleon gravity." Living reviews in relativity 21 (2018): 1-58.



Methods: Analysis of experiments
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5. Sponar, Stephan, et al. "Tests of fundamental quantum mechanics and dark interactions with low-energy neutrons." Nature Reviews Physics 3.5 (2021): 309-327.



Research goals

* Constrain the parameter space with table top experiments at the ATI

* Dilaton®: Vo) = Voe Anlo) =1 2m2 |
A
« Symmetrons; Vs(@) =-5¢"+ 34" Af() = 1+ 2
+ Chameleon®: v e
ameleon®: v (¢) = -, Ac(d) = *

* Consult experimentalists

* Gain physical insight into these models

6. Brax, Philippe, Clare Burrage, and Anne-Christine Davis. "Laboratory constraints." International Journal of Modern Physics D 27.15 (2018): 1848009.



Analxtical results

* Derivation of scalar field dependent physical effects

_ __ Pm _
* Pressure between plates (CANNEX) i pv(Ve“(@"’ pv) = Veii(G0, pv))
* Relative phase shift (Interferometry) Ay — _D%/Ldzzig (E(F) — 62)
* .. ' 0 Pl

* Derivation of precise screening mechanisms of the Dilaton field



Numerical results

* Solve non-linear field equations numerically
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Resulting constraints on the dilaton model
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7. H.F, et al. "Search for environment-dependent dilatons." arXiv preprint arXiv:2307.00243 (2023).



Resulting constraints on the symmetron model
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8. Burrage, Clare, and Jeremy Sakstein. "Tests of chameleon gravity." Living reviews in relativity 21 (2018): 1-58.

9. Brax, Philippe, Anne-Christine Davis, and Benjamin Elder. "Screened scalar fields in hydrogen and muonium." Physical Review D 107.4 (2023): 044008.



Future imErovements

* Dashed Line: Chamber length X 10 1ol
* Light area: Better vacuum pressure ’

/< L
= -20F
* Ideal: Tunable vacuum pressure R
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Further material

[I]] Philippe Brax, H.F., Christian Kading, Mario Pitschmann. The environment
dependent dilaton in the laboratory and the solar system. The European Physical

Journal C 82.10 (2022): 934

[Il] H.F., Christian Kading, Réne Sedmik, Harmut Abele, Philippe
Brax, Mario Pitschmann. Search for environment-
dependent dilatons. arXiv preprint arXiv: 2307.00243

(2023) (submitted)

[1I1] H.F., Christian Kading, Stephan Sponar, Hartmut Lemmel and
Mario Pischmann. Search for dark energy with neutron
interferometry. (to be submitted soon)
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Thank you for your attention!



Backup-slides



Recap Scalar Tensor theory

Scalar Tensor theory

The Dilaton ¢ is motivated by string theory and is defined by a Scalar Tensor theory

5= [ dw- o"R + 0,00 — V(o) + [ a5Vl vl ®
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This generalizes the Einstein Hilbert action in two ways:

@ Adding an additional degree of freedom o.

@ Non-minimal coupling of ¢ to the metric, by a Weyl-rescaling factor A(¢).

y
Physical effects in NR limit

¢ has an effective potential (0¢ = Vet ()

Veii(¢) = V(o) + pA(®) (8)

The Dilaton field causes a fifth force on point particles

f=—mVinA(¢) (9)




Possible screening mechanism

In a general scalar tensor theory (with canonical kinetic term) there are two possible
screening mechanisms.

Screening mechanisms

@ The Chameleon mechanism

o = \/Vett,s(8p): (10)

large mass / short range of the Dilaton force in dense environments, where ¢,
minimizes the effective potential.

@ The coupling 3 to matter is weakened in dense environments (e.g. Symmetron
field).

F=—mVinA(6) = —B(¢) L V¢ (11)
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Energy shifts in gBounce

The first order perturbative energy correction of state n

E) = / xUO* (z20) VIl (® 1)

After Separation into free transversal and bound vertical states this leads to a
resonance frequency shift

and for 1-Mirror
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CANNEX

Area=1cm’

—— Vaccum, 3-100um thick

Lower plate, 6mm thick

—— Metal half space

CANNEX Pressure on Slab

D
PR / dz 0, InA(¢)
0

— P—M(Veﬁc(év, ,OV) — (Veﬁ(QSG:pV))

Pm — Pv




LLR: Equivalence principle violations sun-earth-moon system

5 _olds —da| | |dss —dsd|
T lag +adg | d]

e v (rav—R))

N Qo|Qs — Q¢ | A, ,uv,uz@ﬁ%)

= by (Sv — o
|ﬂc‘ m|2:| 3 V( ' ®) Fau

y

LLR:Precession of Lunar Perigee caused by Fifth Forces
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Derivation of the three parameter regions, the screening mechanisms and the pa-
rameter symmetry

In this section, we describe the three regions of the parameter space obtained by varying the magnitude
ol A, Increasing A while keeping the other parameters lixed eventually leads 1o
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Using W{x) ~ In(z)  In(In(z)) for large = we can approximate
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The mass ji, of the dilaton is given by [1]

which shows that
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Then, the full coupling to matter is approximately

it A- 2 =
Blp,) = Aoty , Az In A Vo In |In A Vo . (5)
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Since p effects 3(¢,) only logarithmically (as long as Eq. (1) holds), while the mass has a square root
dependence, increasing the density primarily leads to an increase in the mass of the field but only a
negligible decrease of 3(¢,,).

Decreasing A inside this region increases ¢, according to Eq. (3). which eventually leads to a
violation of the condition A,¢?/(2m?3) < 1. Eventually, however, A gets small enough such that

pl
A2V, /(Ayp) << 1 holds. Hence, using W () ~ x for small x, we obtain in this second region
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Decreasing A inside this second region decreases ¢, (in contrast to the behaviour in the first region) and

hence the condition Ay /(2m) < 1 is eventually fulfilled again. Inside this parameter region, (¢,
decreases considerably by increasing p. Finally, since
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only the product of AV}, enters the equations of motion, which explains the parameter symmetry that was
observed also numerically, 1.e. changing the parameters A and V;, whilst keeping their product AV, fixed
preserves the constraints on the parameter space for small enough A,
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