

Outline

- Description of HAWC
- Science goals of HAWC
- Astrophysical science highlights (Galactic and extragalactic)
- Multi-messenger astrophysics program
- Particle physics and cosmic ray science highlights
- Future work

HAWC basics

HAWC with Pico de Orizaba in the background

Number of tanks	300 (4 PMTs/200,000 L of water in each) + outriggers
Main array area	22,000 m ²
Location	Puebla, Mexico (19º North)
Altitude	4100 m
Duty Cycle	> 95%
Coverage	2/3 of sky per day
Sensitivity	300 GeV to > 100 TeV
Angular resolution	> 0.1 degrees

Science goals of HAWC

- Galactic and extragalactic gamma rays
 - Distinguish hadronic vs. leptonic emission mechanisms at the highest energies, diffuse emission (neutrino origins), all-sky surveys, transient analyses
 - Active multi-wavelength and multi-messenger physics programs with other experiments
- Fundamental particle physics
 - Distinguish dark matter from astrophysical gamma rays, studies of Lorentz invariance
- Cosmic rays
 - Cosmic ray spectrum, cosmic ray anisotropy, the sun in gamma rays

Newest all-sky maps

- Previous "pass 4" catalog (arxiv 2007.08582): 1523 days, 65 TeV gamma-ray sources
 - Interactive tool on our website:
 https://data.hawc-observatory.org/datasets/3
 hwc

survey/coordinate.php

- New map (on left): pass 5
 - Improved background rejection, angular resolution, wider field-ofview (out to 60 degrees)
 - Updated catalog with multi-search fitting in progress.

Newest ultra-high-energy sky maps

> 56 TeV

All maps assume a 0.5 degree extended source

> 100 TeV

> 177 TeV

Searches for PeVatrons: An example

- LHAASO J2108+5157 discovered by LHAASO, confirmed by HAWC
- Origin unclear leptonic and hadronic (molecular clouds present) both possible
- HAWC currently doing a joint analysis with VERITAS, preliminary results presented at ICRC in July discrepancies with the LHAASO reported spectrum

Gamma-ray binaries

- Microquasar SS433 results published in Nature in 2018, individual lobes resolved, leptonic particle acceleration beyond 100 TeV → now working on spectra of individual lobes
- Now also see two additional gamma-ray binaries: V4641 Sgr and LS 5039

V 4641 Sgr: LMXB with small-scale jets observed in radio

Gamma-ray binaries

- Microquasar SS433 results published in Nature in 2018, individual lobes resolved, leptonic particle acceleration beyond 100 TeV → now working on spectra of individual lobes
- Now also see two additional gamma-ray binaries: V4641 Sgr and LS 5039

- LS 5039, disentangled from the much brighter
 J1825/J1826 region sources
- HAWC detects the high- and low- states of this periodic source

TeV halos

- New source class: TeV halos, first discovered by HAWC
- Extended gamma-ray sources such as these can be used to constrain the origin of the positron excess
- Original 2017 paper had an energy range of 8 to 40 TeV, overall source ~5 sigma
- With new "pass 5" HAWC data, these two sources are > 5 sigma above 56 TeV alone!

New TeV halo candidates

HAWC Collaboration, ApJ Letters 944 (2023) Arxiv: 2301.04646

- HAWC has since discovered other TeV halo candidates – ubiquitous in the universe?
- Example: J0359+5414
- Near a radio-quiet pulsar, 75 kyr old (younger than Geminga/Monogem), high spin-down power

Multi-messenger and multi-wavelength

- HAWC can both follow-up alerts from other experiments and send alerts
- Programs to search for GRBs, coincidences with gravitational waves and IceCube neutrinos, searches for flaring sources, etc.
- Collaborations welcome! Contact us: https://www.hawc-observatory.org/collaboration/

- HAWC instantaneous FOV with LIGO error bands for several LIGO 03 events
- when an alert is received, perform automatic analysis for a variety of different time windows (from 0.3 s to 100 s)

Dark matter searches

Dark matter searches

- Searches using different dark-matter rich areas of the sky: dwarf galaxies, Andromeda, Virgo galaxy cluster, etc.
- Set annihilation and lifetime limits

The sun in TeV gamma rays

- First detection of the solar disk in TeV gamma rays, 6.3σ, anticorrelated with solar activity
- Extension of observed GeV emission; hadronic Galactic CRs showering on nuclei in the solar atmosphere
- How solar magnetic fields shape these interactions still unknown

HAWC Collaboration, Physical Review Letters (2023) Arxiv: 2212.00815

Conclusions

- HAWC has a far-reaching science program covering many different astrophysical and fundamental physics phenomena
- Multi-messenger and multiwavelength studies key to deciphering the nature of many sources

Backup: TeV halo definition

