

Unveiling the seasonal variation of multimuon events at the NOvA Near Detector

Jordi Tuneu^a Eva Santos^a Peter Filip^a
^aFZU - Institute of Physics of the Czech Academy of Sciences

> Unexpected Seasonal Variation

> Unexpected Seasonal Variation

MINOS Data

> Unexpected Seasonal Variation

- > Opposite Seasonal Variation for multi-muon events.
- > Around 4% difference.
- > Simulations have not reproduced correctly the multi-muon Seasonal Variation.

Multimuon NOvA Data

Percentage rate variation of multiple muons in the NOvA ND as a function of month of the year.

μ energy of interest above 50 GeV

Less interactions More decays $\pi \rightarrow \mu$

More interactions Less decays $\pi \rightarrow \mu$

Expected more μ in summer than in winter (< 1%)

> GEOMETRY

> FLUKA SIMULATION

- > FLUKA-CERN-4.2.3
- > Averaged atmospheres of JAN and JUL 2017
- > Data calculated from the temperature and geopotential at 37 pressures level from European Center for Medium-Range Weather Forecasts (ECMWF).
- > 100 atmospheric layers
- > Transport underground

 $> \sim 120,000 \text{ showers.}$

> To reproduce NOvA detector zenith angle acceptance:

Angle distribution from $\theta = 20^{\circ}$ to $\theta = 60^{\circ}$

Multimuons data from NovA ND

Zenith angle distribution in a multiple-muon event in the NO ν A ND.

 $> \sim 120,000 \text{ showers.}$

> To reproduce NOvA detector zenith angle acceptance:

Angle distribution from $\theta = 20^{\circ}$ to $\theta = 60^{\circ}$

Multimuons data from NovA ND

Zenith angle distribution in a multiple-muon event in the NOvA ND.

 $> \sim 120,000$ showers.

> To reproduce NOvA detector zenith angle acceptance:

Angle distribution from $\theta = 20^{\circ}$ to $\theta = 60^{\circ}$

> Energy distribution:

Power-law from 10 TeV to 1 PeV $(\gamma=2.7)$

Multimuons data from NovA ND

Zenith angle distribution in a multiple-muon event in the NO ν A ND.

 $> \sim 120,000$ showers.

> To reproduce NOvA detector zenith angle acceptance:

Angle distribution from $\theta = 20^{\circ}$ to $\theta = 60^{\circ}$

> Energy distribution:

Power-law from 10 TeV to 1 PeV $(\sqrt{2.7})$

> Ratio Species Global Spline Fit (GSF) model:

P: He: N: Fe 1: 1: 0.43: 0.23

Multimuons data from NovA ND

Zenith angle distribution in a multiple-muon event in the NO ν A ND.

> FLUKA SIMULATION RESULTS > Multiplicity ≥ 2

FLUKA Simulations

Multiplicity ≥ 2

NOvA data

Multiplicity ≥ 2

> FLUKA SIMULATION RESULTS > Multiplicity ≥ 2

FLUKA Simulations

Multiplicity ≥ 2

NOvA data

Multiplicity ≥ 2

> FLUKA SIMULATIONS RESULTS

> Multiplicity Dependence of Seasonal Variation

FLUKA Simulations

Multiplicities M = 2, 3, 4, 5, \geq 6

NOvA data

Multiplicities M = 2, 3, 4, 5, \geq 6

> BACKUP SLIDES

> Spatial Distribution

FLUKA (std) $\Delta x \ \sigma_{sw} = 15.46 \ \text{m},$ $\Delta y \ \sigma_{sw} = 11.62 \ \text{m}$

FLUKA simulation. Muons from 1000 showers at the detector plane.

> FLUKA SIMULATIONS RESULTS

> Multiplicity ≥ 2 per Primary species

> FLUKA SIMULATIONS RESULTS

> Multiplicity Dependence per Primary species

Helium is a key element to reproduce the multiplicity!

CORSIKA vs FLUKA

WORK IN PROGRESS

> GEOMETRY

- > FLUKA-CERN-4.2.3
- > Averaged atmospheres of JAN and JUL 2017
- > Data calculated from the temperature and geopotential at 37 pressures level from European Center for Medium-Range Weather Forecasts (ECMWF).
- > 100 atmospheric layers
- > Transport underground

> CORSIKA vs FLUKA > Geometry

- > FLUKA-CERN-4.2.3
- > Averaged atmospheres of JAN and JUL 2017
- > Data calculated from the temperature and geopotential at 37 pressures level from European Center for Medium-Range Weather Forecasts (ECMWF).
- > 100 atmospheric layers
- > Transport underground by Elbert's equation
- > Angles $\theta = 0^{\circ}$, 30° , and 50° Energy = 50 and 100 TeV

> CORSIKA vs FLUKA > Multiplicity ≥ 2

$$\theta = 30^{\circ}$$

> CORSIKA vs FLUKA

> First Interaction

> Summary

- > We reproduce the multi-muon excess in Winter over Summer observed by the NOvA ND.
- > We also reproduce the single-muon excess in Summer over Winter.
- > We describe the multiplicity-dependence of the multi-muon seasonal oscillation amplitude.

> The findings of previous publications relating to issues in CORSIKA failing to reproduce the seasonal variation of multi-muons were not confirmed by our work. Nonetheless, we still observe discrepancies between CORSIKA and FLUKA that require further investigation.

tuneu@fzu.cz

Thank you!!

> BACKUP SLIDES

> Global Spline Model (GSF)

Dominant Energies for our simulations

Dembinski, H. P., et al. PoS ICRC2017 (2018), 533

> BACKUP SLIDES

> Detector size dependence

Seasonal Variation for single muons (triangles) and multimuons (points) for multiple sizes of the NOvA ND. Example from pure helium and zenith angle bin $25-30^{\circ}$.

