Probing the Extragalactic Background Light with the MAGIC telescopes

Roger Grau Haro IFAE-Bist (Barcelona)

And A. Moralejo

On behalf of the MAGIC collaboration

Introduction: Cherenkov telescopes

• Our atmosphere is not transparent to Gamma rays, but for E>~10GeV we can detect them indirectly through the showers of particles they induce in the atmosphere.

• Imaging Atmospheric Cherenkov Telescopes such as MAGIC, CTA, H.E.S.S., FACT and VERITAS detect the Cherenkov light emission produced by the ultra-relativistic shower

particles.

Credit: https://www.cta-observatory.org/astri-detects-crab-at-tev-energies/cherenkov-effect/

Adapted from Longair "High energy astrophysics",1992. 2

Introduction: Extragalactic Background Light

• Second most intense "diffuse" photon field.

- Cosmic Optical Background:
 - (Mostly) Light from stars.
- Infrared background:
 - (Mostly) Light re-radiated after being absorbed by dust

Introduction: Probing the EBL

• Methods:

• Direct measurements:

- Extracting EBL from direct measurements is difficult as it requires subtracting much larger foregrounds.
- Lauer et. al. 2022: direct measurement using New Horizons data (~50 a.u. from the Sun => much smaller foregrounds).

Introduction: Probing the EBL

- Methods:
 - Galaxy counts
 - Integration of flux in magnitude bands.
 - Combination of wide deep surveys.
 - Not sensitive to diffuse and unknown components.
 - Can be interpreted as lower limit (contribution from unresolved galaxies is missing).

Introduction: Probing the EBL

- Gamma-rays-based method
 - Gamma-rays interact with the EBL photons to produce e+epairs. This produces an Edependent imprint of the EBL on the gamma-ray spectra of sources at cosmological distances.
 - Pros: Sensitive to all EBL regardless of the source.
 - Cons: Requires assumptions on the source intrinsic spectra.

Threshold: $E_{\gamma} \epsilon_{EBL} (1-\cos \theta) > 2(m_e c^2)^2$ $\lambda_{max} = 1.24 \ \mu m (E_{\gamma} / 1 \ TeV)$

⇒ VHE flux reduction

- observed flux: $e^{-\tau}$ × emitted flux
- au : optical depth
- $\tau = \tau (E, z)$

Previous MAGIC results

- Select a (concave) function to fit the intrinsic spectrum of the source and then do a profile likelihood of the EBL density (α) for a given EBL model.
- Robustness of result?
 - Results compatible with the EBL density in the model (i.e. with alpha=1) but with very low P-value
 - Selection of the fit function?
 - To get alpha constraints from the profile likelihoods Wilks' theorem is typically used but it may not be applicable.

MAGIC collaboration, arXiv:1904.00134v1

Previous MAGIC results

- Doubts with Wilks' theorem:
 - P-values obtained in previous studies are very small (~10^-2)
 - Possible systematics due to EBL model, fit function, telescope effective area,...
 - Parameters reaching limits (like concavity limit)
- Using too simple models

MAGIC collaboration, arXiv:1904.00134v1

Objectives

- Check the coverages with a Toy Monte-Carlo simulation
 - Verify validity of Wilks' theorem.

 Try to use less strong assumptions on the intrinsic spectral shape

Use a "generic concave function" instead of a logparabola or other simple parametrizations

Toy Monte-Carlo Simulation

- We run different Poisson realizations of the observation of the same spectra (modeled with a function such as PWL, LP,...) using MAGIC IRF.
- Then every realization is analyzed with a Poissonian likelihood maximization.
- Due to the fact that our P-Values are higher than the real data ones, we added Gaussian systematics in the effective area, independent in each energy bin.

A 40.25 % of the simulations have the true value alpha=1 inside the 1 sigma interval around the minimum A 71.12 % of the simulations have the true value alpha=1 inside the 2 sigma interval around the minimum A 88.39 % of the simulations have the true value alpha=1 inside the 3 sigma interval around the minimum $\Delta\chi^2$ min-0 = 46.76 $\Delta\chi^2$ min-2 = 47.60

Result of the combined fit of the Mrk421 simulation (10k realizations). With 2.25% gaussian systematics in the effective area, independent in each energy bin. (ndof = 221)

Toy Monte-Carlo Simulation

- We define 1sigma coverage as the % of simulations that have the true value of α (α = 1) inside the region defined by the minimum and Δ–2logL of the minimum + 1.
- If Wilks' theorem can be applied should be ~68% for 1 sigma, ~95% for 2 sigma,...
- We can see that for the simulation they are lower than the expected ones.

A 40.25 % of the simulations have the true value alpha=1 inside the 1 sigma interval around the minimum A 71.12 % of the simulations have the true value alpha=1 inside the 2 sigma interval around the minimum A 88.39 % of the simulations have the true value alpha=1 inside the 3 sigma interval around the minimum $\Delta\chi^2$ min-0 = 46.76 $\Delta\chi^2$ min-2 = 47.60

Result of the combined fit of the Mrk421 simulation (10k realizations). With 2.25% gaussian systematics in the effective area, independent in each energy bin. (ndof = 221)

Application to real data

- We also added systematics to the effective area in the analysis to get higher P-Values
 - There can be other systematics

EBL scan of 15 Mrk421 spectra with our code (ndof = 221)

 Δ -2logL of the EBL scan of Mrk421 with and without systematics in the analysis. (ndof = 221)

Application to real data

- We also added systematics to the effective area in the analysis to get better P-Values
 - There can be other systematics

EBL scan of 1ES1011 with MBPWL (ndof = 16)

 Δ -2logL of the EBL scan of 1ES1011 with and without systematics in the analysis. (ndof = 16)

0.025 (ndof = 15) 0.049 with systematics (ndof = 15)

P-value of the min:

Generic Concave Function

- Using a generic concave function (instead of LP, EPWL,...):
 - We do not expect inflection points in the VHE intrinsic spectra of BL Lacs.
 - The EBL absorption (log(transmissivity) vs. log(E)) has an inflection point around 1 TeV

Example of the effects of EBL to an SED of a source at different redshift

Generic Concave Function

- Multiply-Broken Power-Law (MBPWL)
 - Power law with changes in the photon index in points called nodes or knots.
 - •To impose concavity the photon index increases on every knot.
 - •The knots are logarithmically spaced between the first and last knot.

•Problems:

- How to choose number of nodes and their position.
- Convergence issues with high number of nodes

Example of a MBPWL with 3 knots in log scale (x and y)

Generic Concave Function

- Analyzing data of 1ES1011, with the MBPWL with only 2 knots we have very similar upper limits to the LP (due to the concavity constraint we have in both functions), but we get more conservative lower limits.
- Lower constraint essentially disappears because the EBL absorption shape can be better fitted with the MBWPL than with the LP.

Simulated 1ES1011 2014 flare with a PWL and fitted a LP (ndof = 17)

Simulated 1ES1011 2014 flare with a PWL and fitted a MBPWL with 2 nodes (ndof = 16)

Conclusions

- We revised the assumptions and methods used in constraining the EBL density using gamma-ray observations.
- We have made an open source Toy MC simulation to check the coverages of the results obtained for the real data.
 - This has proven that Wilks' theorem cannot be applied in those cases.
 - For example when reaching the concavity limit at high values of the EBL scale.
 - Uncertainties in previous studies (not only MAGIC ones) have been underestimated.
- We are exploring the use of more generic functions for modelling the intrinsic VHE spectra, in order to make the EBL constraints more robust.

Open-source code

• All the code used in this analysis is public and can be found in:

https://github.com/R-Grau/EBL_fit_MC

Thank You

Backup slides

• Diffuse night sky brightness (at high galactic & ecliptic latitudes)

EBL scan of the individual 15 Mrk421 spectra with our code with Dominguez 2011 EBL model

• Mrk421 with Saldaña 2021 EBL model

EBL scan of 15 Mrk421 spectra with our code with Saldaña 2021 EBL model

ndof = 221

• Mrk421 including systematics Mrk421

EBL scan of 15 Mrk421 spectra with our code with Dominguez 11 EBL model and adding 2.25% gaussian systematics to the analysis